Growth mechanism of fungi decoded

June 8, 2017, Karlsruhe Institute of Technology
A protein (colored red) is located at the tip of a hypha of Aspergillus nidulans and controls growth. The hypha is about 3 micrometers in diameter and extends by about 1 micrometer per minute. Credit: KIT

Fungi grow with tubular cells extending by kilometers. Growth takes place exclusively at the tip. Researchers of Karlsruhe Institute of Technology (KIT) have now found out how this works: Construction materials are transported on rails through the fungal cells and used at their outermost tip. Calcium concentration at the end of the cell defines when this happens. This is reported by the scientists in the Proceedings of the National Academy of Sciences (PNAS).

Although omnipresent, are considered most mysterious organisms by human beings. Until the late 20th century, chanterelles and horns of plenty were considered plants due to their sedentary lifestyle. Today, it is known that fungi form an empire of their own, which is much closer to that of animals. Experts assume that there are up to five million fungal species, many more than plants or insects. Most of the fungi are hyphae. Their filamentary form fine, very large networks in the ground. These mycelia form the fungus proper, while the hats commonly referred to as fungus only represent the fruiting bodies. Professor Reinhard Fischer of the Institute for Applied Biosciences (IAB), Professor Gerd Ulrich Nienhaus of the Institute of Applied Physics (APH), and Professor Norio Takeshita, who just accepted a professorship at Tsukuba University in Japan, and their teams studied how the hyphae grow by infinite extension of their microscopically small tips and form partly gigantic mycelia.

Contrary to "conventional" by cell division, hyphae grow nearly infinitely (similar to human nerve cells) by extension at their tips. As a result, hyphae may reach a length of several kilometers. While they appear rather modest, hyphae are world champions in growth. "Having a diameter of three micrometers, hyphae can grow by more than one micrometer per minute," Reinhard Fischer says. "This would correspond to human beings gaining ten centimeters in thickness every minute." No wonder that the biggest living organism on earth is a fungus: A honey fungus in the forests of Canada was found to have a diameter of 17 km.

For other organisms, this enormous growth is both a blessing and a curse. "Apart from bacteria, fungi are the best recyclers of organic waste. Its constituents can then be used by the next generations of organisms," Fischer explains. Moreover, fungi play an important role in nutrient uptake of plants: "For every meter of a plant root, there is one kilometer of symbiotic fungal hyphae that supply the plant with nutrients," the microbiologist adds. Fungi also help produce medicine (penicillin, citric acid) and food (cheese, salami). On the other hand, hyphae are dreaded pests of crops and pathogens.

Hence, understanding of the growth processes of hyphae is of interest to both scientists who want to study their positive properties as well as to scientists who want to fight their negative properties. How these growth processes work is studied by international teams of researchers. So far, however, exact coordination of the growth processes has been unknown.

It was known that mycelia do not extend continuously, but grow in phases. It was not known how these growth explosions are initiated and controlled. "As hyphae extend at the tip only, the question was: How do they know where the tip is?", Fischer says. The KIT researchers found that the tip is tagged by certain proteins. The construction material required is supplied in vesicles, small bubbles on motor proteins running on long rails. Upon their arrival at the tip, the vesicles attach to the cell wall and merge with it. As a result, the cell extends. The growth phases are controlled by the at the end of the hyphae. "If the concentration is small, the transport phase starts. In case of a calcium pulse, the vesicles merge with the cell membrane and release their content." The consists of chitin, the material of which insect carapaces are made.

The team visualized the growth processes by marking key elements of the cell's signal and transport system with fluorescent proteins, Norio Takeshita says. For quantitative imaging of living fungi, latest highest-resolution optical fluorescence microscopy methods were applied in this interdisciplinary project.

The scientists expect that their findings will be used for the development of fungicides in agriculture and in the clinical sector as well as for the optimization of biotechnological processes in medicine production.

Explore further: Fungi awake bacteria from their slumber

More information: Norio Takeshita et al. Pulses of Cacoordinate actin assembly and exocytosis for stepwise cell extension, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1700204114

Related Stories

Fungi awake bacteria from their slumber

June 7, 2017

When a soil dries out, this has a negative impact on the activity of soil bacteria. Using an innovative combination of state-of-the-art analysis and imaging techniques, researchers at UFZ have now discovered that fungi increase ...

Novel virus breaks barriers between incompatible fungi

March 23, 2017

Scientists have identified a virus that can weaken the ability of a fungus to avoid pairing with other incompatible fungi, according to new research published in PLOS Pathogens. By promoting fungal pairing, the virus could ...

How fungi can improve the genetic makeup of bacteria

December 14, 2016

Soil bacteria use the extensively branched, thread-like structures of fungi to move around and access new food sources. In a new study published in the journal Scientific Reports, UFZ researchers have been able to demonstrate ...

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

How plants make friends with fungi

October 13, 2016

Many fungi damage or even kill plants. But there are also plant-friendly fungi: Most land plants live in close community with arbuscular mycorrhiza fungi (AM fungi) that stimulate their growth. Researchers of the "Molecular ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.