New study identifies energy metabolism adaptations linked to soft shell turtle evolution

June 6, 2017, Oxford University Press

Around 250 million years ago, terrestrial-bound turtles began to explore the aquatic environments, and with it, a profound, new ability first developed.

Breathable skin, made possible by the loss of their hard shells. Losing the hard shell is a feature that evolved independently in three turtle lineages during the Late Cretaceous, providing greater swimming speed and maneuverability.

And the loss of hard shells at different evolutionary branch points resulted in adaptive changes because of changes in respiration.  They could maintain aerobic respiration for longer periods of time, and sustain deeper dives.

Now, scientists Tibisay Escalona, and Agostinho Antunes from the CIIMAR research institute in Porto, Portugal, and Cameron Weadick from Sussex University in Brighton, United Kingdom have traced the origin of these adaptations to different genes that are part of the mitochondrial respiratory complex in soft shelled turtles.

"It's reasonable to hypothesize that turtle mitochondrial DNA-encoded proteins may have undergone adaptive evolutionary changes associated with the loss of shell scutes and the invasion of highly aquatic eco-physiological niches," said the authors.

Mitochondria, which are passed along solely from mothers to offspring, are known as the powerhouses of the cell, responsible for and 95 percent of the cell's energy currency in the form of ATP.

The research team investigated patterns of in the mitochondrial DNA (mtDNA) protein coding genes across 53 Cryptodiran turtle species (representing a total of 10 families), testing for adaptive or divergent patterns of mtDNA evolution associated with the evolution of soft-shells.

The researchers identified positively selected sites that occurred in the mitochondrial-encoded proteins of the oxidative phosphorylation system by using various models and mapped these mutations onto the three-dimensional structures of the proteins, and predicted the severity of these structural changes on respiratory function. 

They've shown that subtle amino acid changes can have large functional effects and saw the largest changes effecting complex one, the first and the largest domain of the OXPHOS pathway. Complex I, is responsible for an estimated 40 percent of the proton current that drives ATP synthase.

"Our data supports the notion that the adoption of highly aquatic lifestyles in soft-shelled was associated with altered patterns of selection on mitochondrial function. Our analyses thus revealed that positive selection strongly affected mtDNA evolution along two (Trionychidae and Carettochelyidae) of the three lineages associated with the evolution of soft-shells, and that positive selection targeted multiple mtDNA genes in both cases," said the authors.

However, they did not see this adaptation in . Why not? "This suggests that the evolution of a soft-shell in leatherbacks may have been linked to thermoregulation, not respiration, enabling the species to regulate heat gain and loss," said the authors.

Their findings highlight the valuable role of mitochondrial in the larger context of mitochondrial protein biochemistry, human diseases and turtle ecology.

Explore further: How to protect cells from selfish mitochondrial DNA

More information: Molecular Biology And Evolution (2017). DOI: 10.1093/molbev/msx167

Related Stories

How to protect cells from selfish mitochondrial DNA

April 20, 2017

Using yeast cells as a model, scientists from the A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University investigated the mechanisms that allow cells to protect themselves from invasion of ...

Coming out of their evolutionary shells

November 24, 2015

One of the wonders of evolutionary innovation in animals is the turtle shell, which differs from any other reptilian defense adaptation, giving up teeth or venom in exchange for an impenetrable shield.

Evolution of mitochondria

May 18, 2016

Mitochondria are the power stations of human cells. They provide the energy needed for the cellular metabolism. But how did these power stations evolve, and how are they constructed? Researchers from the University of Freiburg ...

The evolution of turtle neck retraction

March 6, 2017

One of the unique and most iconic features of many modern turtles is that they can withdraw their neck and head to hide and protect them within their shells. The group name of species which do this, Cryptodira, even means ...

Evolutionary origin of the turtle shell

May 30, 2013

Through careful study of an ancient ancestor of modern turtles, researchers now have a clearer picture of how the turtles' most unusual shell came to be. The findings, reported on May 30 in Current Biology, help to fill a ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.