Nano fiber feels forces and hears sounds made by cells

May 15, 2017
Artist's illustration of nano optical fibers detecting femtonewton-scale forces produced by swimming bacteria. Credit: Rhett S. Miller/UC Regents

Engineers at the University of California San Diego have developed a miniature device that's sensitive enough to feel the forces generated by swimming bacteria and hear the beating of heart muscle cells.

The device is a nano-sized that's about 100 times thinner than a human hair. It can detect forces down to 160 femtonewtons—about ten trillion times smaller than a newton—when placed in a solution containing live Helicobacter pylori bacteria, which are swimming bacteria found in the gut. In cultures of beating from mice, the nano fiber can detect sounds down to -30 decibels—a level that's one thousand times below the limit of the human ear.

"This work could open up new doors to track small interactions and changes that couldn't be tracked before," said nanoengineering professor Donald Sirbuly at the UC San Diego Jacobs School of Engineering, who led the study.

Some applications, he envisions, include detecting the presence and activity of a single bacterium; monitoring bonds forming and breaking; sensing changes in a cell's mechanical behavior that might signal it becoming cancerous or being attacked by a virus; or a mini stethoscope to monitor cellular acoustics in vivo.

The work is published in Nature Photonics on May 15.

The optical fiber developed by Sirbuly and colleagues is at least 10 times more sensitive than the atomic force microscope (AFM), an instrument that can measure infinitesimally small forces generated by interacting molecules. And while AFMs are bulky devices, this optical fiber is only several hundred nanometers in diameter. "It's a mini AFM with the sensitivity of an optical tweezer," Sirbuly said.

The device is made from an extremely thin fiber of tin dioxide, coated with a thin layer of a polymer, called polyethylene glycol, and studded with gold nanoparticles. To use the device, researchers dip the nano optical fiber into a solution of , send a beam of light down the fiber and analyze the light signals it sends out. These signals, based on their intensity, indicate how much force or sound the fiber is picking up from the surrounding cells.

"We're not just able to pick up these small forces and sounds, we can quantify them using this device. This is a new tool for high resolution nanomechanical probing," Sirbuly said.

Here's how the device works: as light travels down the optical fiber, it interacts strongly with the gold nanoparticles, which then scatter the light as signals that can be seen with a conventional microscope. These light signals show up at a particular intensity. But that intensity changes when the fiber is placed in a solution containing live cells. Forces and sound waves from the cells hit the , pushing them into the polymer layer that separates them from the fiber's surface. Pushing the nanoparticles closer to the fiber allows them to interact more strongly with the light coming down the fiber, thus increasing the intensity of the signals. Researchers calibrated the device so they could match the signal intensities to different levels of or sound.

The key to making this work is the fiber's polymer layer. It acts like a spring mattress that's sensitive enough to be compressed to different thicknesses by the faint forces and sound waves produced by the cells. And Sirbuly says the can be tuned—if researchers want to measure larger forces, they can use a stiffer polymer coating; for increased sensitivity, they can use a softer polymer like a hydrogel.

Moving forward, researchers plan to use the nano fibers to measure bio-activity and the of single cells. Future works also includes improving the fibers' "listening" capabilities to create ultra-sensitive biological stethoscopes, and tuning their acoustic response to develop new imaging techniques.

Explore further: Scientists print nanoscale imaging probe onto tip of optical fiber

More information: Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions, Nature Photonics (2017). DOI: 10.1038/nphoton.2017.74

Related Stories

Subwavelength optical fibers to diffuse light

October 27, 2014

Researchers at the Femto-ST Institute, working in collaboration with colleagues from the Charles Fabry Laboratory (CNRS/Institut d'Optique Graduate School), have just discovered a new type of light diffusion in tiny optical ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.