Subwavelength optical fibers to diffuse light

October 27, 2014, CNRS
A laser beam (emitting at a wavelength of 600 nanometers) is guided into an optical microfiber. Credit: Thibaut Sylvestre, Institut Femto-ST/CNRS

Researchers at the Femto-ST Institute, working in collaboration with colleagues from the Charles Fabry Laboratory (CNRS/Institut d'Optique Graduate School), have just discovered a new type of light diffusion in tiny optical fibers 50 times thinner than a strand of hair! This phenomenon, which varies according to the fiber's environment, could be used to develop sensors that are innovative and highly sensitive. The work is published in the journal Nature Communications on October 24, 2014.

Optical microfibres are silica fibres tapered down to a size 50 times smaller than a strand of hair, with an approximate diameter of one micrometer (a thousandth of a millimeter) or even less. To produce these tiny objects, researchers at the Charles Fabry Laboratory heated and stretched used in telecommunications, measuring 125 micrometers in diameter. The remainder of the study was carried out at the Femto-ST Institute in Besançon. By injecting a laser beam in these silica microwires, the CNRS researchers observed a new type of Brillouin light scattering for the first time, involving surface acoustic waves. This discovery was subsequently confirmed by a numerical simulation, which helped verify the physical mechanism at play.

Since the diameter of the fibers is smaller than the wavelength of the light used (1.5 micrometers, in the infrared), the light is extremely confined inside. As it travels, it infinitesimally shakes the wire, displacing it by a few nanometers (one millionth of a millimetre). This distortion gives rise to an acoustic wave that travels along the fiber surface at a velocity of 3,400 meters per second, according to the results of the researchers. The wave in turn affects the propagation of the light, as part of the light radiation returns with a different wavelength in the opposite direction.

This phenomenon had never been observed previously, for it only occurs when light is confined in a subwavelength-diameter fiber. In standard optical fibers, light travels essentially in the core of the fiber (with a 10-micrometrer diameter), and consequently does not generate surface waves.

Since the waves generated by the confinement of the light travel along the surface of the microfibers, they are sensitive to environmental factors such as temperature, pressure and ambient gas. This makes it possible to design highly sensitive and compact optical sensors for industry. These results also help improve our knowledge of the fundamental interaction between and sound on an infinitesimally small scale.

Explore further: Enhancing optical interactions in advanced photonic devices

More information: J.C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude and T. Sylvestre. "Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre." Nature Communications, October 24, 2014 DOI: 10.1038/ncomm6242

Related Stories

Enhancing optical interactions in advanced photonic devices

May 7, 2014

Trapping light into a small volume is a useful way of amplifying optical effects. Optical cavities, for example, can enhance the interaction between light and matter. Incorporating these tiny structures into actual devices ...

Nanoparticles break the symmetry of light

October 6, 2014

How can a beam of light tell the difference between left and right? At the Vienna University of Technology (TU Wien) tiny particles have been coupled to a glass fibre. The particles emit light into the fibre in such a way ...

A tool for measuring atomic properties at the quantum limit

September 12, 2014

Performing high-resolution, high-sensitivity measurements of light and matter at the quantum limit requires extraordinary tools. Due to the difficulties of manipulating atoms with the necessary control, such measurements ...

Hollow optical fibers for UV light

July 2, 2014

(Physikalisch-Technische Bundesanstalt (PTB)) Researchers from the Max Planck Institute for the Science of Light in Erlangen/Germany and of the QUEST Institute, based at the Physikalisch-Technische Bundesanstalt, have tested ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.