Study unravels long-held Fermi puzzle tied to nonlinear systems

April 14, 2017 by Grove Potter, University at Buffalo
Enrico Fermi at the blackboard. Credit: Wiki Commons.

In physics, the Fermi-Pasta-Ulam-Tsingou (FPUT) problem—which found that certain nonlinear systems do not disperse their energy, but rather return to their initial excited states—has been a challenge that scientists have tackled repeatedly since 1955.

The challenge within the FPUT problem was that the scientists expected the system to achieve a relaxed state, possibly equilibrium, but instead it never relaxed.

Numerous papers have narrowed the focus of the problem, finding that weak can reach a type of equilibrium. But the question of strongly nonlinear systems reaching full equilibrium has remained a mystery.

Now, a discovery by an international team of scientists, published in March in the journal Physical Review E, has found that such a system can reach equilibrium, provided certain conditions are met.

"That is a big deal," said Surajit Sen, PhD, a physics professor in the University at Buffalo's College of Arts and Sciences and co-author of the paper, "because in a very convoluted way, it confirms what [Enrico] Fermi had thought probably should happen."

Sen has been studying , generated in a chain of solid spheres—or grains—held between stationary walls, for more than two decades. In 2000, he discovered how such waves can break into smaller "baby" solitary waves. Further research by others found that these solitary waves, under certain conditions, could reach a state of quasi-equilibrium, a generally calm state, but with large kinetic fluctuations.

Yet whether these strongly nonlinear systems could relax beyond this quasi-equilibrium phase, where the large kinetic energy fluctuations settle to much smaller equilibrium values, remained uncertain.

"What we are finding is that when these solitary waves continuously break down during collisions, they start to break down and reform. When this breaking down and reforming become comparable, that's when you get to the quasi-equilibrium phase," Sen said.

When the number of solitary waves running around the system become too large to even count, that is when the quasi-equilibrium ever-so-slowly goes over to true equilibrium where energy is roughly equally shared by all the particles.

Sen concedes that it is reasonable to ask: What does it matter? On one level, Sen says, this is pure science, with few immediate practical applications. However, there may be practical applications for materials science.

"I think it has implications in materials modeling," Sen said. "Suppose I want to make a material capable of withstanding enormous amounts of heat, or one that converts a mechanical vibration to electrical current. To make them, I have to have a really good understanding of how these materials transfer energy, and this research cuts right to the heart of it."

The breakthrough in the research came when Michelle Przedborski, a PhD student at Brock University in Canada, examined the specific heat of the chain of solid spheres by considering the collisions between the spheres. The specific heat behavior and the energy fluctuation, due to the collisions as predicted by the equilibrium theory, agreed exactly with the results predicted by dynamical computer simulations.

"That was the 'aha!' moment," Sen said. "They come from two different routes. Nothing can be sweeter than this, because when you have an agreement of this magnitude and of this level of exactness, you know the system is in equilibrium. There are no 'if, ands or buts' about it.

"What we have managed to show—in the context of the Fermi-Pasta-Ulam-Tsingou problem, where the question was raised whether non-linear systems would go to equilibrium, over which there has been this 60-plus year debate—is that strongly non-linear systems such as these do go to equilibrium."

Among the conditions required for the state to be reached are that solitary waves must interact, or collide with each other, and the system must be gently perturbed, rather than violently shaken.

Explore further: Mathematicians solve 60-year-old problem

More information: Michelle Przedborski et al, Fluctuations in Hertz chains at equilibrium, Physical Review E (2017). DOI: 10.1103/PhysRevE.95.032903

Related Stories

Mathematicians solve 60-year-old problem

March 23, 2015

A team of researchers, led by Rensselaer Polytechnic Institute professor Yuri Lvov, has found an elegant explanation for the long-standing Fermi-Pasta-Ulam (FPU) problem, first proposed in 1953, investigated with one of the ...

Physicists detect the undetectable: 'baby' solitary waves

May 5, 2005

When University at Buffalo theorist Surajit Sen published his prediction that solitary waves, tight bundles of energy that travel without dispersing, could break into smaller, "baby" or secondary solitary waves, experts in ...

New approach to form non-equilibrium structures

July 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Da Schneib
2.5 / 5 (2) Apr 14, 2017
This is a confirmation of a long-held conjecture about the nature of equilibrium. It's dynamic equilibrium; something that some folks have always contended was meaningless or unphysical.

This has wide implications for chaos theory.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.