Decorating single layer and bilayer graphene with useful chemical groups

March 29, 2017
Graphene's functionalization reaction.The sodium-potassium alloy (NaK) in solution forms a sodium ion (Na-) when it meets the crown ether molecule (15-crown-5). Na- reduces graphene and makes it more reactive towards other molecules (R). The "decorated" graphene has several potential applications. Credit: Institute for Basic Science

Researchers at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS) at Ulsan National Institute of Science and Technology disclosed a new method to add chemical groups on (that is, to "functionalize") single layer (SLG) and bilayer (BLG) graphene lying on silica/silicon. This study, recently published online in the Journal of the American Chemical Society (JACS) also suggests how decorated graphene serves as a platform to produce 2-D materials with new characteristics.

A single layer of carbon atoms packed in a honeycomb lattice, called graphene, is one of the most versatile materials ever made. Its excellent heat and electricity conductivity, combined with lightness and strength, offer compelling possibilities for a variety of useful functions.

To better tune the properties of graphene, the use of functionalized graphene, that is graphene decorated with other chemical groups, has attracted extensive research interest. Such functionalized graphene could be applied to transistors, sensors, supercapacitors, drug delivery, flexible electrodes and polymer nanocomposites.

Functionalization of SLG on silica/silicon has been previously reported, but when a BLG is used, the reaction turns out to be much more complicated. BLG has different reactivity because two graphene layers adhere to each other through what are known as van der Waals forces, make BLG more chemically stable and even unreactive for some reactions. Additional fascinating aspects include the reactivity of each of the layers in BLG and other factors that can influence the reaction.

Figure 2: Energy scheme for the functionalization of SLG and BLG.Although BLG is more difficult to functionalize, both SLG and BLG can overcome the energy barrier, and thus be functionalized. Credit: Institute for Basic Science

To compare and contrast reaction of SLG and BLG, the team produced flawless samples of SLG and BLG and made them more prone to react by immersing them in a mixture of sodium-potassium alloy (NaK) and a ring-shaped crown ether molecule (15-crown-5) in tetrahydrofuran (THF). This solution forms a negatively charged sodium ion (Na-), which reduces graphene by donating electrons to it, and allows SLG and BLG to react with other molecules more easily.

Using this reaction, IBS researchers demonstrated that although BLG is less reactive than SLG, both of them can be functionalized. Moreover, by using a BLG with one layer of normal carbon and another of carbon isotope-labeled carbon (13C), the scientists clarified that both the upper and lower layers of graphene are decorated.

The team also showed that functionalized graphene can undergo further chemical reactions with other molecules, which would hardly bind to it otherwise for the conditions used. For example, graphene functionalized with 4-iodopyridine can then further react with benzyl bromide. This is a particularly interesting approach, since graphene decorated with benzyl bromide can be used for sensors and can be decorated with more chemical groups, greatly expanding the 'toolkit' of options.

"We envision that this method and platform will contribute to expanding the application range of ," comments Rodney S. Ruoff, corresponding author of the paper.

Figure 3: Functionalized graphene allows additional functionalization.A schematic diagram showing the reaction between 4-pyridyl groups that were decorated on single layer graphene (SLG) and benzyl bromide. This sequential functionalization expand the applications of graphene. Credit: Institute for Basic Science

Explore further: Adding hydrogen to graphene

More information: Mandakini Biswal et al. Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b00932

Related Stories

Adding hydrogen to graphene

November 3, 2016

Adding hydrogen to graphene could improve its future applicability in the semiconductor industry, when silicon leaves off. Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic ...

Low-cost and defect-free graphene

September 2, 2016

Graphene is one of the most promising new materials. However, researchers across the globe are still looking for a way to produce defect-free graphene at low costs. Chemists at Friedrich-Alexander-Universiät Erlangen-Nürnberg ...

Travelling through the body with graphene

September 28, 2016

For the first time researchers succeeded to place a layer of graphene on top of a stable fatty lipid monolayer. Surrounded by a protective shell of lipids graphene could enter the body and function as a versatile sensor. ...

Graphene decharging and molecular shielding

February 8, 2016

A new joint theoretical and experimental study suggests that graphene sheets efficiently shield chemical interactions. One of the promising applications of this phenomenon is associated with improving the quality of 2D materials ...

Nano-calligraphy on graphene

December 8, 2016

Scientists at The University of Manchester and Karlsruhe Institute of Technology have demonstrated a method to chemically modify small regions of graphene with high precision, leading to extreme miniaturisation of chemical ...

Milestone in graphene production

January 3, 2017

For the first time, it has been possible to produce functional OLED electrodes from graphene. The process was developed by Fraunhofer researchers together with partners from industry and research. The OLEDs can, for example, ...

Recommended for you

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

Low-cost battery from waste graphite

October 11, 2017

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.