Unravelling the atomic and nuclear structure of the heaviest elements

February 22, 2017, KU Leuven
The metallic chemical elements known as actinides take their name from the first element in the series: actinium. Actinium is one of the heavy, radioactive elements in Mendeleev’s table that are still largely beyond the frontiers of knowledge. Credit: Shutterstock

Little is known about the heaviest, radioactive elements in Mendeleev's table. But an extremely sensitive technique involving laser light and gas jets makes it possible for the very first time to gain insight into their atomic and nuclear structure. An international team led by scientists from the Institute for Nuclear and Radiation Physics at KU Leuven report these findings in Nature Communications.

In 2016 scientists added four more to Mendeleev's periodic table. These heavy elements are not found on Earth and can only be generated using powerful particle accelerators. "The elements are usually generated in minuscule quantities, sometimes just a couple of atoms per year. These atoms are also radioactive, so their decay is quick: sometimes they only exist for a fraction of a second. That is why scientific knowledge of these elements is very limited," say nuclear physicists Mark Huyse and Piet Van Duppen from the KU Leuven Institute for Nuclear and Radiation Physics.

The KU Leuven researchers are now hoping to change that through a new use of the laser ionization technique. "We produced actinium (Ac), the name-giving element of the heavy actinides, in a series of experiments using the particle accelerator at Louvain-la-Neuve. The quickly decaying atoms of this element were captured in a gas chamber filled with argon, sucked into a supersonic jet, and spotlighted with laser beams. By doing so we bring the outer electron in a different orbit. A second laser beam then shoots the electron away. This ionizes the atom, meaning that it becomes positively charged and is now easy to manipulate and detect. The colour of the is like a fingerprint of the atomic structure of the element and the structure of its nucleus."

In itself, laser ionization is a well-known technique but its use in a is new and very suitable for the heavy, : "By ionizing the atom we significantly increase the sensitivity of the technique. The production of a few atoms per second is already enough for measurements during the experiments. This technology increases the sensitivity, accuracy, and speed of the laser ionization by at least ten times. This marks an entirely new era for research on the heaviest elements and makes it possible to test and correct the theoretical models in nuclear physics. Our method will be used in the new particle accelerator of GANIL, which is currently under construction in France."

Explore further: First spectroscopic investigation of element nobelium

More information: R. Ferrer et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion, Nature Communications (2017). DOI: 10.1038/NCOMMS14520

Related Stories

First spectroscopic investigation of element nobelium

September 30, 2016

The analysis of atomic spectra is of fundamental importance for our understanding of atomic structures. Until now, researchers were unable to examine heavy elements with optical spectroscopy because these elements do not ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
not rated yet Feb 22, 2017
Excellent experiment that is based on the very analytical methods of physics that is based on an electromagnetic model of the atom. In this case, the atom is very heavy with many electrons and much lower electron energy. This permits of much lower frequency changes that fall within the present limits of measurement. Bravo!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.