Researchers developing sponge-like material to more efficiently store natural gas

January 20, 2016
Researchers at the University of Pittsburgh's Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb natural gas like a sponge and allow for more energy-efficient storage and use. Credit: University of Pittsburgh

Although compressed natural gas represents a cleaner and more efficient fuel for vehicles, its volatile nature requires a reinforced, heavy tank that stores the gas at high pressure and therefore limits vehicle design. Researchers at the University of Pittsburgh's Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb the gas like a sponge and allow for more energy-efficient storage and use.

The research, "Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks," was published this week in the journal Physical Review Letters by Christopher E. Wilmer, assistant professor of chemical and petroleum engineering, and postdoctoral fellow Hasan Babaei.

Traditional CNG tanks are empty structures that require the gas to be stored at , which affects design and the weight of the vehicle. Dr. Wilmer and his lab are instead focused on porous crystal/gas systems, specifically MOFs, which possess structures with extremely high surface areas.

"One of the biggest challenges in developing an adsorbed natural gas (ANG) storage system is that the process generates significant heat which limits how quickly the tank can be filled," Dr. Wilmer said. "Unfortunately, not a lot is known about how to make adsorbents dissipate heat quickly. This study illuminates some of the fundamental mechanisms involved."

According to Dr. Wilmer, gases have a $500 billion impact on the global economy, but storing, separating, and transporting gas requires energy-intensive compression. His research into MOFs is an extension of his start-up company, NuMat Technologies, which develops MOF-based solutions for the gas storage industry.

"By gaining a better understanding of heat transfer mechanisms at the atomic scale in porous materials, we could develop a more efficient material that would be thermally conductive rather than thermally insulating," he explained. "Beyond , these insights could help us design better hydrogen gas storage systems as well. Any industrial process where a interacts with a porous material, where is an important factor, could potentially benefit from this research."

Explore further: Chemists find better way to pack natural gas into fuel tanks

More information: Physical Review Letters, journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.025902

Related Stories

Porous crystals for natural gas storage

November 6, 2011

(PhysOrg.com) -- Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different structures possible, ...

Collaboration puts natural gas on the road

March 18, 2013

DOE's Savannah River National Laboratory, in partnership with Ford Motor Company, the University of California-Berkeley, and BASF, has research underway to explore an innovative low-pressure material-based natural gas fuel ...

'Molecular sponge' advancement in storing hydrogen

July 21, 2015

Researchers at our University have discovered that hydrogen absorbed in specialised carbon nanomaterials can achieve extraordinary storage densities at moderate temperatures and pressures.

Free pores for molecule transport

July 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many MOFs is inhibited ...

Recommended for you

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

Rapid ceramic-metal processing for superior composites

January 19, 2017

Recent advancements in automotive, aerospace and power generation industries have inspired materials scientists to engineer innovative materials. Ceramic metal composites, or cermets, are an example of a new and improved ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.