Genomic secrets of gutless deep-sea tubeworm unlocked

Researchers from The Hong Kong University of Science and Technology (HKUST) decoded for the first time the chromosomal-level genome of a deep-sea gutless tubeworm and how the worm's co-living bacterial partners manufacture ...

Under pressure, 'squishy' compound reacts in remarkable ways

Remarkable things happen when a "squishy" compound of manganese and sulfide (MnS2) is compressed in a diamond anvil, say researchers from the University of Rochester and the University of Nevada, Las Vegas (UNLV).

Bacteria enlisted in French push for rare earths autonomy

As Europe seeks to reduce its reliance on China for the rare earth metals needed for modern batteries and electronics, French researchers have found a potentially potent ally: bacteria that can help extract the elements from ...

Thousands of firefighters battle big blazes across the West

An army of firefighters labored in hot, dry and windy weather Tuesday to contain fires chewing through wilderness and burning homes across drought-stricken Western states already sweltering in the second heat wave of the ...

page 1 from 40

High pressure

High pressure science and engineering is studying the effects of high pressure on materials and the design and construction of devices, such as a diamond anvil cell, which can create high pressure. By high pressure it is usually meant pressures of thousands (kilobars) or millions (megabars) of times atmospheric pressure (about 1 bar).

It was by applying high pressure as well as high temperature to carbon that man-made diamonds were first produced as well as many other interesting discoveries. Almost any material when subjected to high pressure will compact itself into a denser form, for example, quartz, also called silica or silicon dioxide will first adopt a denser form known as coesite, then upon application of more temperature, form stishovite. These two forms of silica were first discovered by high pressure experimenters, but then found in nature at the site of a meteor impact.

Chemical bonding is likely to change under high pressure, when the P*V term in the free energy becomes comparable to the energies of typical chemical bonds - i.e. at around 100 GPa. Among the most striking changes are metallization of oxygen at 96 GPa (rendering oxygen a superconductor), and transition of sodium from a nearly-free-electron metal to a transparent insulator at ~200 GPa. At ultimately high compression, however, all materials will metallize.[citation needed]

High pressure experimentation has led to the discovery of the types of minerals which are believed to exist in the deep mantle of the Earth, such as perovskite which is thought to make up half of the Earth's bulk, and post-perovskite, which occurs at the core-mantle boundary and explains many anomalies inferred for that region.[citation needed]

Pressure "landmarks": pressure exerted by a fingernail scratching is ~0.6 GPa, typical pressures reached by large-volume presses are up to 30-40 GPa, pressures that can be generated inside diamond anvil cells are ~320 GPa, pressure in the center of the Earth is 364 GPa, highest pressures ever achieved in a shock waves are over 100,000 GPa.[citation needed]

This text uses material from Wikipedia, licensed under CC BY-SA