Cooperative catalysts offer unique route to alkenes

December 11, 2015

Chemists at Princeton have developed a new chemical method to introduce valuable alkenes into simple hydrocarbon molecules, a transformation known as dehydrogenation, which is found in important processes such as the biosynthesis of essential fatty acids in the body and the commercial production of detergents.

Leading approaches in the natural and synthetic classes of reactions possess attractive features that are unavailable to the other. Existing synthetic methods produce as a useful byproduct but require very high temperatures, while natural methods run at mild temperatures but produce a full equivalent of an unusable byproduct.

"What if we could have a method that offers the benefits of both approaches? Can we be greedy?" asked Julian West, a graduate student in the Sorensen lab and first author of the study published in Nature Communications. Guided by this goal, the researchers devised a novel two-component that performs the dehydrogenation reaction at room temperature, making hydrogen gas and a molecule containing an alkene, or carbon-carbon double bond.

"If you're a chemist, you have a keen sense of the importance of the alkene," Erik Sorensen, the Arthur Allan Patchett Professor in Organic Chemistry at Princeton and corresponding author. Alkenes are highly versatile and can readily serve as starting materials in many reactions. "It's a portal to a whole range of compound types," he said.

The alkene was generated using a pair of catalysts to separately remove two hydrogen atoms from neighboring carbons atoms. To break the first, stronger carbon-hydrogen bond, the researchers chose a so-called hydrogen atom transfer catalyst known as decatungstate, which is activated by ultraviolet light. "We used light energy to get the reaction going," Sorensen said.

Once the first bond is broken, the adjacent hydrogen atom was much easier to remove using a second catalyst, a compound called cobaloxime. "It's like a one-two punch," West said, "once we had the substrate on the ropes, we didn't need a very strong catalyst to take the other atom."

Another advantage of the method is that both catalysts are made of cheap, earth abundant metals, instead of the precious metals, such as iridium and rhodium, used in current state-of-the-art methods. However, the dual catalyst system has yet to reach the same level of efficiency as existing methods, which the researchers suspect is due to the alkene product binding to the decatungstate catalyst, inhibiting its participation in the reaction.

"The method is noted more for its conceptual uniqueness than its efficiency," Sorensen said.

It's the dual catalyst system design that could really "pay dividends," West said. The researchers plan to apply of their strategy to other chemical transformations as well. "We're all really excited because this reaction opens the door to catalysis for our group," he said.

Explore further: New chemistry makes strong bonds weak

More information: Julian G. West et al. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis, Nature Communications (2015). DOI: 10.1038/ncomms10093

Related Stories

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

New catalyst features unsurpassed selectivity

October 29, 2015

Catalysts that power chemical reactions to produce the nylon used in clothing, cookware, machinery and electronics could get a lift with a new formulation that saves time, energy and natural resources.

From waste stream to sustainable fuel

October 6, 2015

Many industrial processes produce large quantities of waste water containing all kinds of chemicals. These contaminated water streams can be used to produce hydrogen gas with help of catalysts without vaporizing the water. ...

Recommended for you

Custom-built molecule shows promise as anti-cancer therapy

June 22, 2017

Scientists at the University of Bath funded by Cancer Research UK have custom-built a molecule which stops breast cancer cells from multiplying in laboratory trials, and hope it will eventually lead to a treatment for the ...

How protons move through a fuel cell

June 22, 2017

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ...

Sea sponges stay put with anchors that bend but don't break

June 22, 2017

Sea sponges known as Venus' flower baskets remain fixed to the sea floor with nothing more than an array of thin, hair-like anchors made essentially of glass. It's an important job, and new research suggests that it's the ...

New catalyst paves way for carbon neutral fuel

June 21, 2017

Australian scientists have paved the way for carbon neutral fuel with the development of a new efficient catalyst that converts carbon dioxide (CO2) from the air into synthetic natural gas in a 'clean' process using solar ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.