July 10, 2015

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Nation's largest smart grid demo provides lessons for future grid modernization

Avista Utilities of Spokane installed smart transformers to help improve the efficiency of its distribution system in Pullman as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: Avista Utilities
× close
Avista Utilities of Spokane installed smart transformers to help improve the efficiency of its distribution system in Pullman as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: Avista Utilities

Smart meters, automated control of power distribution and other intelligent energy technologies can improve energy efficiency and possibly reduce power costs, according to the final results of a comprehensive, five-year regional smart grid pilot project.

But more research and development is needed to support utility-led deployment throughout the United States, concluded the leaders of the Pacific Northwest Smart Grid Demonstration Project.

"As one of the nation's largest and most complex smart grid demonstration projects to date, the Pacific Northwest Smart Grid Demo experienced much success, while also identifying many opportunities for growth," said project director Ron Melton of Battelle, which led the project on behalf of the region and the Department of Energy's Office of Electricity Delivery and Energy Reliability.

"The knowledge gained through this project will help prepare the region and nation for a bright energy future that strengthens our economy, protects our environment and enhances our quality of life."

The project's extensive results are in an 840-page document called the Technology Performance Report. The report includes a summary of key findings, chapters for each of the project's 11 test sites and results related to conservation and efficiency, reliability and a new approach to energy management called transactive control, which was the heart of the overall project.

Saving energy and money

The project evaluated 55 different technologies, many of which showed they can reduce energy use and possibly also cut bills. The degree of savings varied with each technology and test location, as is shown in the following examples:

Tests also showed some technologies can improve reliability:

Portland General Electric installed a 5-megawatt, lithium-ion battery in Salem, Oregon, as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: Portland General Electric
× close
Portland General Electric installed a 5-megawatt, lithium-ion battery in Salem, Oregon, as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: Portland General Electric

Transactive control works

The project also demonstrated the concept of transactive control works and potentially provides many benefits on a regional power grid. Transactive control, initially developed by Pacific Northwest National Laboratory, involves automatic, electronic transactions between energy providers and users about whether or not to sell or buy power. These transactions are designed to improve and reliability, reduce power costs and enhance renewable energy use.

To test the concept, the project used transactive signals that represented the predicted price and availability of power in the present and several days into the future. The project's transactive signals were updated every five minutes and sent to participating utilities. When transactive signals predicted peak power demand, and therefore also high costs, the project's smart grid technologies were designed to reduce power use.

To help test the transactive control technology, Alstom Grid built a model of the regional grid. The model ran in parallel with the actual grid while using both real data and estimations. Analysis showed the transactive signals would have correctly advised smart grid equipment to alter their operations during two critical moments on the actual regional grid:

"Dramatic events such as these wouldn't normally be on the radar of individual utilities, but can significantly impact utility operations," Melton said. "Being able to respond to such events with transactive signals illustrates the importance of having system-wide transactive engagement.

"It also represents an important step toward a future where end users can be equipped and empowered to play an active role in their power use."

To evaluate the potential impact of transactive control beyond the project and for the entire Northwest, IBM created another model that rapidly simulated different scenarios on the regional grid. Tests run on that model showed the Northwest's peak power demand could be reduced about 7.8 percent if 30 percent of the regional electric grid used transactive, demand-responsive equipment. This modeling also showed transactive energy approaches can lower the Northwest's overall power costs by taking advantage of wind energy when it's abundant and inexpensive.

The City of Ellensburg, Washington, installed new solar panels and wind turbines to its existing Renewable Energy Park as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: City of Ellensburg
× close
The City of Ellensburg, Washington, installed new solar panels and wind turbines to its existing Renewable Energy Park as part of the Pacific Northwest Smart Grid Demonstration Project. Credit: City of Ellensburg

Lessons learned

As is common in scientific research, not all of the project's tests went as expected. Such discoveries are providing important insights into the challenges that must be overcome before national grid modernization can take place. Key lessons learned include:

Next steps

Idaho Falls Power tested requirements for connecting plug-in hybrid electric vehicles to the grid as part of the Pacific Northwest Smart Grid Demonstration Project.
× close
Idaho Falls Power tested requirements for connecting plug-in hybrid electric vehicles to the grid as part of the Pacific Northwest Smart Grid Demonstration Project.

Though the demonstration project has come to a close, regional and national smart grid efforts are ongoing. For example, several project participants are continuing smart grid programs on their own:

"The $80 million in equipment installed for the project provides a key opportunity for the Northwest to continue and expand its smart energy management, with regional ratepayers being the ultimate beneficiary," Melton noted.

More information: "Technology Performance Report," technical results of Pacific Northwest Smart Grid Demonstration Project, published online July 9, 2015. www.smartgrid.gov/document/Pac … ogy_Performance.html

"Technology Performance Report Highlights," layman's summary of Pacific Northwest Smart Grid Demonstration Project results, published online July 9, 2015. www.pnwsmartgrid.org/docs/PNW_ … GDP_AnnualReport.pdf

Load comments (0)