Organic semiconductors will create cheaper, greener devices

April 10, 2015
Organic semiconductors will create cheaper, greener devices
Semiconductors are used in devices such as LED TVs to convert electric current to light; and in photovoltaic cells, commonly known as solar panels, which absorb light energy and convert it into electricity.

Research into organic semiconductors could lead to more efficient LED TVs and flexible solar cells that are cheaper to make and take less energy to produce according to researchers at the University of Bath.

Semiconductors are used in devices such as LED TVs to convert electric current to light; and in , which absorb light energy and convert it into electricity. Traditionally 'inorganic semiconductors', often based on silicon, are used in such devices. However these are relatively difficult to make and take a lot of energy to produce.

It is estimated that made from silicon can take a year to pay back the total energy consumed in their manufacture.

Despite efforts over the last three decades to develop organic semiconductors on a mass scale, scientists have been challenged by the fact that this type of semiconductor is less efficient at conducting electricity.

Now, a team from the University of Bath, collaborating with scientists in Germany and The Netherlands, has identified how the electronics industry could overcome some of the existing problems associated with using organic semiconductors.

Dr Daniele Di Nuzzo, Research Officer in Physics at the University and first author on the paper, explained: "Conventional semiconductor devices are tricky to make because they first require the production of crystalline materials. Because of this, they also use up a lot of energy to be produced.

"In contrast, organic semiconductors can be processed via printing techniques. For example, organic semiconducting polymers can be dissolved in a solvent to make an electronic ink to be printed onto a surface.

"However they have a disordered structure and conduct electrical charges less well than silicon."

One way of improving the electrical properties of organic semiconductors is to mix them with 'doping' molecules, which work by adding electrical charges to the polymer.

Dr Di Nuzzo added: "It's difficult currently to implement the doping technique in an effective way to produce organic that work with high performances. Our research shows why this is the case and suggests how we can improve the performance of these materials."

The study, published in the journal Nature Communications, found that the size and geometrical position of the doping molecule used had an effect on the efficiency of the semiconductor material.

Dr Enrico Da Como from the University's Department of Physics, led the study. He explained: "The organic polymer consists of a chain of units which is mixed with the doping molecule before it is printed onto a surface. We found that the doping molecule can bind to the polymer in several different orientations, some of which make a more effective semiconductor than others.

"Our work suggests that if you use a larger doping molecule, you limit the number of ways it can bind to the polymer, making the efficiency of the semiconductor more consistent."

Explore further: Researchers discover N-type polymer for fast organic battery

More information: Daniele Di Nuzzo, et al "How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers" is published in Nature Communications 6, Article number: 6460 DOI: 10.1038/ncomms7460

Related Stories

Recommended for you

Destabilization processes in foam

September 19, 2017

Oktoberfest is an exciting cultural event, but it is also a source of inspiration for materials scientists and engineers. Not the beer itself, but rather the beer foam is a source of inspiration.

Solar-to-fuel system recycles CO2 to make ethanol and ethylene

September 18, 2017

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have harnessed the power of photosynthesis to convert carbon dioxide into fuels and alcohols at efficiencies far greater than plants. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Eikka
1 / 5 (1) Apr 11, 2015
Efficiency isn't the only problem. Organic polymers are far easier to break down by ultraviolet or even blue light. For example, the first generation OLEDs couldn't be made into consumer products because the blue diodes disintegrated themselves in use in less than 10,000 hours. A television screen made out of them would have faded to a yellow tint in 3-4 years of use.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.