Researchers capture microimages of micropillar P/N junctions on a semiconductor

December 10, 2014 by Joost Bruysters, University of Twente

By equipping a semiconductor, with which you can convert sunlight into electricity, with micropillars, you can increase the surface and efficiency. Creating a so-called P/N junction in these micropillars, which follows the 3D structure of the surface, is essential in this to be able to properly separate the positive and negative charge in the structure. Scientists of the UT research institute MESA+ have for the very first time succeeded in accurately visualizing these P/N junctions in semiconductors in 3D. They created a semiconductor with a million minuscule micropillars per square centimetre and succeeded in accurately portraying the P/N junction with an electron microscope. The research has been published in the prominent scientific journal Advanced Energy Materials.

Silicon that has been 'polluted' with, for example, boron (P-type) or phosphorus (N-type) is better at conducting electricity. This 'pollution' is better known as doping in English. By connecting a P-type silicon and an N-type silicon to each other to form a P/N junction you create a semiconductor as present in solar cells, in which the positive and carriers (electrons and 'holes') move towards different sides of the structure.

Significant increase in efficiency

Researchers of the University of Twente have succeeded in creating P/N junctions in 3D-structured silicon, which is equipped with large amounts of minuscule micropillars. They succeeded in accurately checking the measure of doping, which resulted in a P/N transfer that is present in the entire structure and at the same distance of the surface everywhere. They could accurately portray the P/N transfer in three dimensions with the help of a scanning . They also showed that their structures showed a significant increase in efficiency in the transfer of sunlight to electricity. The reasons for this is that the charge always only has to bridge a minimal distance within the structure. The acquired knowledge is relevant for improving the efficiency of, for example, .

Explore further: SolaRoad: World's first solar cycle path to open in the Netherlands

Related Stories

Stacking solar cells method could be electricity gain

August 7, 2014

Is there a way to stack solar cells and convert more of the energy in sunlight into electricity? Not only has a company developed a method, but, as a headline said Wednesday in MIT Technology Review, the approach could make ...

A single-sheet graphene p-n junction with two top gates

November 6, 2014

Researchers in Canada have designed and fabricated a single-sheet graphene p-n junction with two top gates. The standard technique, using a top and a bottom gate, can lead to damaging of the graphene layer. This is avoided ...

3-D nanocone solar cell technology cranks up efficiency

April 29, 2011

(PhysOrg.com) -- With the creation of a 3-D nanocone-based solar cell platform, a team led by Oak Ridge National Laboratory's Jun Xu has boosted the light-to-power conversion efficiency of photovoltaics by nearly 80 percent.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.