Climate study predicts a significant increase of lightning during 21st century

December 16, 2014, University at Albany
Climate study predicts a significant increase of lightning during 21st century
Scientists at the University at Albany and the University of California-Berkeley are expecting a significant increase in lightning strikes during the 21st century.

A new study published in Science predicts a 50 percent increase in lightning strikes across the United States during this century as a result of warming temperatures associated with climate change.

University at Albany Professor of Atmospheric and Environmental Sciences John Molinari and Senior Scientific Programmer David Vollaro in conjunction with UC Berkeley climate scientist David Romps and graduate student Jacob Seeley looked at predictions of precipitation and cloud buoyancy in 11 different and concluded that their combined effect will generate more frequent electrical discharges to the ground.

"With warming, thunderstorms become more explosive," said Romps, an assistant professor of earth and planetary science and a faculty scientist at Lawrence Berkeley National Laboratory, and lead author of the study. "This has to do with water vapor, which is the fuel for explosive deep convection in the atmosphere. Warming causes there to be more water vapor in the atmosphere, and if you have more fuel lying around, when you get ignition, it can go big time."

A significant impact of increased strikes would be more wildfires, since half of all fires—and often the hardest to fight—are ignited by lightning, Romps said. More lightning also would likely generate more nitrogen oxides in the atmosphere, which exert a strong control on atmospheric chemistry, and could result more human injuries: estimates of people struck each year range from the hundreds to nearly a thousand, with scores of deaths.

The study made use of U.S. Weather Service data on precipitation, radiosonde measurements of temperature and moisture, and lightning-strike counts from the National Lightning Detection Network. The lightning network was developed at the University at Albany during the 1980s. It measures the location of cloud-to-ground lightning flashes in the United States and out to a few hundred miles offshore with great accuracy. Data from the network has previously been used to study the behavior of hurricanes.

"This paper represents the first time we have used these data for climate-related problems," said Molinari. "Our approach was to use the relationship of lightning to 'convective available potential energy' (CAPE; a measure of the potential for thunderstorms) and precipitation in the current climate. Then we used that knowledge to estimate the potential for increased lightning in future climates, evaluated from climate model predictions."

The team looked at 11 different climate models that predict precipitation and CAPE through this century and are archived in the most recent Coupled Model Intercomparison Project (CMIP5). CMIP was established as a resource for climate scientists, providing a repository of output from that can be used for comparison and validation.

"With CMIP5, we now have for the first time the CAPE and precipitation data to calculate these time series," Romps said.

On average, the models predicted an 11 percent increase in CAPE in the U.S. per degree Celsius rise in global average temperature by the end of the 21st century. Since the models predict little average precipitation increase nationwide over this period, the product of CAPE and precipitation gives about a 12 percent rise in cloud-to-ground per degree in the contiguous U.S., or a roughly 50 percent increase by 2100 if Earth sees the expected 4-degree Celsius increase (7° F) in temperature. This assumes carbon dioxide emissions keep rising consistent with current trends.

Exactly why CAPE increases as the warms is still an area of active research, Romps said, though it is clear that it has to do with the fundamental physics of water.

Explore further: Lightning will increase by 50 percent with global warming, research says

Related Stories

Examining increasing potential for storms with global warming

October 9, 2013

Increases in convective available potential energy (CAPE)—the energy available to a parcel of air as it rises through a cloud that is warmer than its surroundings, causing it to rise—may increase the potential for severe ...

Recommended for you

Evidence of earliest life on Earth disputed

October 17, 2018

When Australian scientists presented evidence in 2016 of life on Earth 3.7 billon years ago—pushing the record back 220 million years—it was a big deal, influencing even the search for life on Mars.

Arctic greening thaws permafrost, boosts runoff

October 17, 2018

A new collaborative study has investigated Arctic shrub-snow interactions to obtain a better understanding of the far north's tundra and vast permafrost system. Incorporating extensive in situ observations, Los Alamos National ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.