Aerogel technology holds potential for oil and chemical clean-up

February 25, 2014 by Marianne Spoon
Aerogel technology holds potential for oil and chemical clean-up
Here the sponge-like aerogel soaks up only the red-dyed diesel fuel in a beaker of water.

Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.

But a group of researchers at UW–Madison is examining alternative, greener materials that can be modified to absorb oil and chemicals. If further developed, the technology may offer a cheaper and more to absorb oil and heavy metals from water and other surfaces.

Shaoqin "Sarah" Gong, a researcher at WID's BIONATES research group and associate professor of biomedical engineering, along with graduate student Qifeng Zheng and Zhiyong Cai, a project leader at the USDA Forest Products Laboratory in Madison, Wis., have recently created and patented the new aerogel technology.

Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints.

The aerogel prepared in Gong's lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally-friendly freeze-drying process without the use of organic solvents.

Aerogel technology holds potential for oil and chemical clean-up
Shaoquin Gong, Qifeng Zheng and Zhiyong Cai showcase their new aerogel technology.

It's the combination of this "greener" material and its high performance that got Gong's attention.

"For this material, one unique property is that it has superior absorbing ability for organic solvents—up to nearly 100 times its own weight," she says. "It also has strong absorbing ability for metal ions."

Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.

"So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently," she says. "Once it's fully saturated, you can take it out and squeeze out all the . Although its absorbing capacity reduces after each use, it can be reused for a couple of cycles."

In addition, this cellulose-based aerogel exhibits excellent flexibility as demonstrated by compression mechanical testing.

Though much work needs to be done before the production of the aerogel can be mass-produced, Gong says she's eager to share the technology's potential benefits beyond the scientific community.

"We are living in a time where pollution is a serious problem—especially for human health and for animals in the ocean," she says. "We are passionate to develop technology to make a positive societal impact."

Explore further: Airy but thirsty: Ultralight, flexible, fire-resistant carbon nanotube aerogels from bacterial cellulose

More information: "Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents." Qifeng Zheng, Zhiyong Cai, Shaoqin Gong. J. Mater. Chem. A, 2014,2, 3110-3118. DOI: 10.1039/C3TA14642A.

Related Stories

Making aerogels the fast way

February 4, 2014

One day, Union College's Aerogel Team's novel way of making "frozen smoke" could improve some of our favorite machines, including cars.

Researchers produce ultra-light aerogel

March 25, 2013

A research team headed by Professor Gao Chao have developed ultra-light aerogel – it breaks the record of the world's lightest material with surprising flexibility and oil-absorption. This progress is published in the "Research ...

Recommended for you

Scientists spin artificial silk from whey protein

January 23, 2017

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's research light source PETRA III, the scientists could watch just how ...

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.