Making aerogels the fast way

February 4, 2014
Making aerogels the fast way
Credit: Union College

One day, Union College's Aerogel Team's novel way of making "frozen smoke" could improve some of our favorite machines, including cars.

"When you hold it feels like nothing – like frozen smoke. It's about 95 to 97 percent air," said Ann Anderson, professor of mechanical engineering. "Nano-porous, solid and very low density, aerogel is made by removing solvents from a wet-gel. It's used for many purposes, like thermal insulation (on the Mars Rover), in windows or in extreme-weather clothing and sensors."

Together with Brad Bruno, associate professor of mechanical engineering, Mary Carroll, professor of chemistry and others, Anderson is studying the feasibility of commercializing their aerogel fabrication process. A time and money-saver, it could appeal to industries already using aerogel made in other ways.

During rapid supercritical extraction (RSCE), chemicals gel together (like Jell-O) in a hot press; the resulting wet-gel is dried by removing solvents (the wet part). The remaining aerogel (dried gel), is created in hours, rather than the days or weeks alternative methods take.

RSCE, Anderson said, is also approximately seven times cheaper, requiring one hour of labor for every 8 hours the other methods need.

A good place for such a process, and Union aerogel, is the automotive industry.

"Our 3-way catalytic aerogels promote chemical reactions that convert the three major pollutants in automotive exhaust – unburned hydrocarbons, nitrogen oxides and carbon monoxide – into less harmful water, nitrogen and carbon dioxide," Anderson said. "Because aerogels have very high surface areas and good thermal properties, we think they could replace precious metals, like platinum, used in current catalytic converters."

Indeed, the surface area of one 0.5-gram bit of aerogel equals 250 square meters.

"That's a lot of surface area for gases to come in contact with, facilitating very efficient pollution mitigation," Anderson said.

Explore further: Light but stable: novel cellulose-silica gel composite aerogels

Related Stories

Researchers produce ultra-light aerogel

March 25, 2013

A research team headed by Professor Gao Chao have developed ultra-light aerogel – it breaks the record of the world's lightest material with surprising flexibility and oil-absorption. This progress is published in the "Research ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
not rated yet Feb 04, 2014
Can it be made so that it has high compliance? Thinking of vibrating a membrane sandwiched between two thin sheets of the material with the external sides stabilized.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.