Cylindrical nanoparticles more deadly to breast cancer

December 3, 2013, University of New South Wales

Worm-like nanoparticles more deadly to breast cancer
Microscope images of the worm-like, rod-like, micelle and vesicle shaped nanoparticles,
(Phys.org) —Cylindrical shaped nanoparticles are seven times more deadly than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

Even better – the worm-shaped drug delivery vehicles aren't more toxic to according to the study, which was recently published in Polymer Chemistry.

In this study, different polymeric nanoparticle shapes (including spherical micelle, cylindrical micelle and vesicles) were investigated, and the preliminary results suggest shape plays an important role in the cell uptake and toxicity response. The project was co-led by Associate Professor Cyrille Boyer from the UNSW School of Chemical Engineering and the Australian Centre for NanoMedicine and Professor Thomas Davis from Monash University, and involved Dr Bunyamin Karagoz from Istanbul Technical University.

Developing to target drugs directly to specific regions of the body is a growing field of medicine, and these new results suggest changing the shape of nanoparticles could reduce treatment costs and side effects.

"What we've discovered is that a different shaped nanoparticle can have a very different effect on , even with the same amount of drug," says Boyer. "However there is still a lot of work to do and we need to test the nanoparticles in vitro with a range of ."

Previously, research has overwhelmingly focused on spherical drug delivery systems as they're easier to make, but this new study also presents a simple and cheap way of creating three different nanoparticle shapes – spherical, vesicular and tubular or 'worm-like'.

The researchers are now looking into whether cylindrical shape nanoparticles also deliver drugs more efficiently to other types of cancers.

Explore further: New nanoparticle delivers, tracks cancer drugs

More information: "Polymerization-Induced Self-Assembly (PISA) – control over the morphology of nanoparticles for drug delivery applications." Bunyamin Karagoz, Lars Esser, Hien T. Duong, Johan S. Basuki, Cyrille Boyer, Thomas P. Davis. Polym. Chem., 2014. DOI: 10.1039/C3PY01306E , Received 19 Sep 2013, Accepted 01 Oct 2013.

Related Stories

New nanoparticle delivers, tracks cancer drugs

October 29, 2013

(Phys.org) —UNSW chemical engineers have synthesised a new iron oxide nanoparticle that delivers cancer drugs to cells while simultaneously monitoring the drug release in real time.

Cells prefer nanodiscs over nanorods

October 7, 2013

For years scientists have been working to fundamentally understand how nanoparticles move throughout the human body. One big unanswered question is how the shape of nanoparticles affects their entry into cells. Now researchers ...

To treat cancer, is the force strong with nanorobots?

November 22, 2013

(Phys.org) —Every day, more than 20,000 people around the world succumb to cancer, according to statistics compiled by the World Health Organization. Thousands more continue to suffer through treatment and its side effects.

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.