Discovery of plant gene lays groundwork for improved biofuel processing

August 28, 2012 by James Hataway, University of Georgia
Immunofluorescence microscopy shows cell walls that become fluorescent when they contain xylan that lacks methyl groups. The increase in red fluorescence indicates that the xylan in the GXMT1 mutant cell walls has fewer methyl groups, which may make it easier to convert biomass from these plants into biofuels. Credit: Supriya Ratnaparkhe/UGA

(—Since 2007, researchers at the BioEnergy Science Center, one of three Department of Energy-funded research centers, have partnered to figure out how to break down plants so that they easily release the simple sugars that can be processed into biofuels. It's a breakthrough that could make biofuels cost competitive with gasoline.

Now, University of Georgia researchers who are part of the team have taken an important step toward that goal by identifying a previously uncharacterized gene that plays a major role in development of Arabidopsis plants, a discovery that promises to help turn plants into biofuel more efficiently.

The team of researchers found that the gene GXMT1 is responsible for directing a key step in the development of the plant polymer xylan, a principal component of cell walls in that make it resistant to biofuel conversion.

"Our goal is to figure out how the plants make this polymer," said William York, the study's principle investigator and faculty member in the UGA Research Center. "If we can manipulate that process, we can change how plants make their cell walls, which could make them easier to turn into ."

As a member of the BioEnergy Science Center, York joins multidisciplinary, multi-institutional research teams pursuing the fundamental needed to make the production of cellulosic biofuels derived from non-food plant fiber cost effective on a national scale.

York explained that the problem with many candidates is not that they are difficult to grow or harvest, but that they are difficult to process. In order to make biofuels, processing facilities use microbes to ferment the naturally occurring into ethanol and other valuable products, much in the same way distilleries make .

But plants have evolved powerful defenses against the microbes researchers use to break down biomass for fermentation. This research demonstrates that manipulation of biomass structure at the molecular level could yield a crop that is more easily converted into biofuel.

"We want to develop strains of plants that are strong and grow well but break down easily when we want them to," said York, who is also a professor of biochemistry and molecular biology in the UGA Franklin College of Arts and Sciences and a member of the UGA Bioenergy Systems Research Institute.

In their paper, published in the Proceedings of the National Academy of Sciences, the researchers identified a mutant GXMT1 plant that produces structurally modified xylan that is more easily released when the biomass is treated with hot water. The release of xylan during this treatment will ultimately make it easier for microbes to digest the woody fibers and convert them to ethanol.

If researchers can find ways to capitalize on this mutant version of the plant and alter this gene without compromising the structural integrity of the wood, they can begin the process of developing plants specifically designed for biofuel conversion.

While the development of efficient biofuels is a major driving force behind their work, this research also contributes significantly to the understanding of basic plant development.

Before their discovery, GXMT1 was categorized in scientific literature as a protein of unknown function, but it is now the first enzyme shown to catalyze the formation of methyl-glucuronic acid, a key structural component of xylan in plant biomass.

Ultimately, York and his collaborators hope that their research will open the door to new ways of manipulating plants and making them more useful to humans.

"We use plants for everything: We eat plants, we build our homes out of , we make all sorts of things with them," York said. "If we can change them, we can make them easier to work with."

Explore further: Biofuel from biomass one step closer to reality thanks to discovery to manipulate 'hot' microbes

Related Stories

Breeding better grasses for food and fuel

January 17, 2012

Researchers from the Biotechnology and Biological Sciences Research Council (BBSRC) Sustainable Bioenergy Centre (BSBEC) have discovered a family of genes that could help us breed grasses with improved properties for diet ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

Hot weather is bad news for bird sperm

January 19, 2018

A new study led by Macquarie University and spanning Sydney and Oslo has shown that exposure to extreme temperatures, such as those experienced during heatwave conditions, significantly reduces sperm quality in zebra finches, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.