Bringing telescope tech to X-ray lasers

July 11, 2012 By Glenn Roberts Jr., SLAC National Accelerator Laboratory
A laser beam aims skyward from the Keck II 10-meter telescope atop Mauna Kea in Hawaii, creating a sort of artificial "star" that, when coupled with an adaptive optics system featuring an adjustable mirror, can compensate for distortions in Earth's atmosphere and produce clearer space images. The laser guide star, used to measure the atmospheric distortions, excites sodium ions about 56 miles high. Photo courtesy Adam Contos (Ball Aerospace)

(Phys.org) -- Technology that helps ground-based telescopes cut through the haze of Earth's atmosphere to get a clearer view of the heavens may also be used to collect better data at cutting-edge X-ray lasers like the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory.

In a paper published in the July 10 edition of Nature Communications, an international research team describes the successful test of a specialized sensor that measured distortions in the LCLS with "unprecedented accuracy." The authors propose the installation of such a sensor, which is based on the principle of and achieves a very high accuracy due to precisely microfabricated gratings, as part of a system designed to cancel out the 's .

The research team, led by Christian David  from the Paul Scherrer Institute in Switzerland, included scientists from SLAC and the European X-ray Free Electron Laser (EXFEL) project.

"From a software and controls point of view, you can actually apply the same methods used to improve the vision of telescopes such as those at W.M. Keck Observatory in Hawaii," said Jacek Krzywinski, an X-ray optics specialist at SLAC who participated in the experiments.

The dual telescopes at Keck are equipped with adaptive optics systems that compensate, on the fly, for the Earth's atmospheric turbulence to produce clearer space images. Their systems rely on sensors that supply information about atmospheric distortions and control "deformable" mirrors – systems of tiny mirrors that automatically make split-second adjustments to cancel out these atmospheric distortions.

While adaptive optics systems fitted to telescopes provide for continual adjustments based on monitoring of atmospheric distortions, "At an X-ray free electron laser, every shot differs slightly from the next," said Simon Rutishauser, a graduate student at the Paul Sherrer Institute and lead author of the paper. So an adaptive optics system for an X-ray laser could perhaps be used to adjust the mirrors prior to an experiment, and then to record the beam's distortions for each pulse during the experiment.

If the sensor is coupled with an auto-adjusting mirror, that could improve focusing and performance of the beam, he added.

In the case of X-ray lasers, scientists could divert a portion of the laser's energy to a sensor with "negligible disturbance to the main beam" and without destroying the sensor in the process, Krzywinski said.

The sensor could be used to automatically steer an adjustable mirror, to retool or make adjustments to standard components of the laser, or to compensate for the laser distortions in the collected data and in some cases discard selected data when the laser distortions are too great. Just as scientists were able to measure and compensate for flaws in the mirror of the Hubble Space Telescope, Krzywinski noted, it's possible to design away the distortions in X-ray laser optics.

The uniformity of laser pulses is important to many experiments at LCLS, and reducing beam distortions can provide higher-quality data. Laser optics, including mirrors, have inherent flaws at the nanoscale, which can introduce that vary based on the beam settings.

While implementation of adaptive optics technology at the LCLS would still require a substantial R&D effort, researchers say it is both plausible and desirable. In the meantime, the wave-front information recorded by the sensor for each single X-ray pulse can already be leveraged to improve the data quality of experiments performed without adaptive optics.

Explore further: Inexpensive 'adaptive optics' achieved by Sandia's optical clamp

Related Stories

FLASH Imaging Redux: Nano-Cinema is Born

July 8, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precursor to research ...

Lower energy could lead to more biological imaging at LCLS

May 30, 2012

While SLAC's Linac Coherent Light Source was designed to push the limits as a high-energy X-ray laser, users' requests have led staff at the facility to successfully step it back to a lower minimum energy for some experiments.

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.