Highest X-ray energy used to probe materials

July 22, 2010, Lawrence Livermore National Laboratory
Highest X-ray energy used to probe materials

Scientists for the first time have dived into the effect that an intense X-ray free electron laser (XFEL) has on materials.

Using the (LCLS) facility at the SLAC National Accelerator Laboratory, Lawrence Livermore scientists probed at X-ray energies of up to 8 keV (kiloelectronvolts), the highest X-ray energy ever used at an XFEL, to see how it behaved when the laser hit it.

The photoluminescence-based pulse-energy detector allowed the team to study the interaction - including electron dynamics and space charge effects - between nitrogen gas and the XFEL beam. Understanding the precise dynamics at work on these scales will forever change the understanding of chemistry, physics and materials science.

The XFEL's is so bright at 8 kilo electron volts and so fast (it has a pulse length from 10 femtoseconds to 100 femtoseconds) that LLNL scientists were able to validate the physics of simulations done using nitrogen gas. (One is one quadrillionth of a second).

"The detailed physics is very important for most LCLS experiments since it determines the interpretation of the results," said Lab scientist Stefan Hau-Riege. "The unique thing about this experiment is that it was performed upstream from the LCLS mirrors, and so we had access to the full range of LCLS X-ray energies (which went up to 8 keV at the time)."

The heart of the LCLS is a that produces beams of coherent, high-energy X-rays. Coherence - the phenomenon of all photons in a beam acting together in perfect lockstep - makes laser light far brighter than ordinary light. Since X-ray photons at the LCLS are coherent, the resulting beam of light will be as much as a billion times brighter than any other X-ray light source available today.

The LCLS also contains a femto-camera that can sequence together images of the ultra small, taken with the ultrafast pulses of the LCLS. Scientists are for the first time creating molecular movies, revealing the frenetic action of the atomic world.

The LCLS, and its cousins planned in Germany and Japan, improves on third-generation light sources. The third-generation sources are circular, stadium-size synchrotrons, and they produce streams of incoherent X-ray photons. Since their pulses are long compared to the motion of electrons around an atom, synchrotron light sources cannot begin to explore the dynamic motion of molecules.

The pulses of light from the fourth-generation LCLS are so short, lasting for just quadrillionths of a second, that its beam provides an X-ray strobe light to capture such atomic and molecular behavior.

Explore further: Early results from the world's brightest X-ray source

More information: The research will appear in the July 27 online edition of Physical Review Letters.

Related Stories

Early results from the world's brightest X-ray source

June 22, 2010

The first published scientific results from experiments at SLAC's Linac Coherent Light Source are out. The report, published today in Physical Review Letters, is the first look at how molecules respond to ultrafast pulses ...

World's First Hard X-ray Laser Achieves 'First Light'

April 21, 2009

(PhysOrg.com) -- The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers the first-ever ...

FLASH Imaging Redux: Nano-Cinema is Born

July 8, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precursor to research ...

First Test of New X-ray Laser Strips Neon Bare

September 18, 2009

(PhysOrg.com) -- It takes a lot of energy to strip all ten electrons from an atom of neon. Doing it from the inside out, knocking away the most-closely-held, innermost electrons first, is an even rarer feat. But the brilliant ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.