Rewriting quantum chips with new laser technique

June 26, 2012, City College of New York
The probe head used to send radio-frequency pulses onto the coil used for pulsed spin manipulation of a gallium arsenide (semiconductor) sample. (Credit: Yunpu Li)

(Phys.org) -- The promise of ultrafast quantum computing has moved a step closer to reality with a technique to create rewritable computer chips using a beam of light. Researchers from The City College of New York (CCNY) and the University of California Berkeley (UCB) used light to control the spin of an atom's nucleus in order to encode information.

The technique could pave the way for , a long-sought leap forward toward computers with processing speeds many times faster than today's. The group will publish their results on June 26 in Nature Communications.

Current are approaching the upper limits in processing speed, and they rely on etching a into a to create a chip or integrated circuit. These patterns of interconnections serve as highways to shuttle information around the circuit, but there is a drawback.

"Once the chip is printed, it can only be used one way," explained Dr. Jeffrey Reimer, UCB professor of chemical and biomolecular engineering and the study co-author.

Rewriting quantum chips with new laser technique
Close up of the mount used to hold a gallium arsenide (semiconductor) sample, showing the radio-frequency coil used for pulsed spin manipulation. (Credit: Yunpu Li)

The team – including CCNY Professor of Physics Carlos Meriles and PhD graduate students Jonathan King of UCB and Yunpu Li of CCNY– saw a remedy for these problems in the emerging sciences of spintronics and quantum computing.

They have developed a technique to use laser light to pattern the alignment of "spin" within so that the pattern can be rewritten on the fly. Such a technique may one day lead to rewritable spintronic circuits.

Digital electronics and conventional computing rely on translating electrical charges into the zeros and ones of binary code. A "spintronics" computer, on the other hand, would use the quantum property of electron spin, which enables the electron to store any number between zero and one.

Imagine this as if the electron were a "yin-yang" symbol in which the proportions of the dark and light areas—representing values from zero to one—could vary at will. This would mean that multiple computations could be done simultaneously, which would amp up processing power.

Attempts at using electrons for quantum computing have been plagued, however, by the fact that electron spins switch back and forth rapidly. Thus, they make very unstable vehicles to hold information. To suppress the random switching back and forth of electrons, the UCB and CCNY researchers used laser light to produce long-lasting nuclear spin "magnets" that can pull, push, or stabilize the spins of the electrons.

They did this by illuminating a sample of gallium arsenide – the same semiconductor used in cell phone chips – with a pattern of light, much as lithography etches a physical pattern onto a traditional integrated circuit. The illuminated pattern aligned the spins of all the atomic nuclei, and, thus, their electrons, at once, creating a spintronic circuit.

"What you could have is a chip you can erase and rewrite on the fly with just the use of a light beam," said Professor Meriles. Changing the pattern of light altered the layout of the circuit instantly.

"If you can actually rewrite with a beam of and alter this pattern, you can make the circuit morph to adapt to different requirements," he added. "Imagine what you can make a system like that do for you!"

Explore further: Researchers advance toward hybrid spintronic computer chips

More information: Jonathan P. King, Yunpu Li, Carlos A. Meriles, and Jeffrey A. Reimer. Optically Re-Writable Patterns of Nuclear Magnetization in Gallium Arsenide. 26 June, Nat. Commun. dx.doi.org/ 10.1038/ncomms1918

Related Stories

Physicists put a new spin on electrons

April 15, 2009

In the first demonstration of its kind, researchers at the University of British Columbia have controlled the spin of electrons using a ballistic technique--bouncing electrons through a microscopic channel of precisely constructed, ...

Putting a new spin on computing

June 21, 2011

(PhysOrg.com) -- Physicists at the University of Arizona have achieved a breakthrough toward the development of a new breed of computing devices that can process data using less power.

Subatomic quantum memory in diamond demonstrated

June 27, 2011

Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Phil DePayne
not rated yet Jun 26, 2012
Just think: at the push of a button your quantum turing machine can now emulate any know configuration of supercomputing parallelism, all at unfathomable speeds!
Ady13
not rated yet Jun 26, 2012
Doesn't time do strange things under quantum conditions, what if this technology already exist!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.