Related topics: solar cells · light · transistors

Formation of honeycomb nanostructures finally explained

A few years ago, a promising new type of nanomaterial was observed experimentally, combining the virtues of semiconductors with those of graphene. The material is formed by nanocrystals that spontaneously assemble into a ...

Water creates traps in organic electronics

Poor-quality organic semiconductors can become high-quality semiconductors when manufactured in the correct way. Researchers at Linköping University show in an article in Nature Materials that the motion of charges in organic ...

A new energy-saving LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the ...

Semiconductor firm to buy, expand upstate NY chip plant

An Arizona-based semiconductor supplier will purchase GlobalFoundries' computer chip manufacturing plant in the Hudson Valley, adding 150 new jobs and preserving hundreds of others as part of a $720 million expansion plan, ...

page 1 from 23


A semiconductor is a material that has a resistivity value between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical field. Devices made from semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, and many other devices. Semiconductor devices include the transistor, solar cells, many kinds of diodes including the light-emitting diode, the silicon controlled rectifier, and digital and analog integrated circuits. Solar photovoltaic panels are large semiconductor devices that directly convert light energy into electrical energy. In a metallic conductor, current is carried by the flow of electrons. In semiconductors, current can be carried either by the flow of electrons or by the flow of positively-charged "holes" in the electron structure of the material.

Silicon is used to create most semiconductors commercially. Dozens of other materials are used, including germanium, gallium arsenide, and silicon carbide. A pure semiconductor is often called an “intrinsic” semiconductor. The conductivity, or ability to conduct, of semiconductor material can be drastically changed by adding other elements, called “impurities” to the melted intrinsic material and then allowing the melt to solidify into a new and different crystal. This process is called "doping".

This text uses material from Wikipedia, licensed under CC BY-SA