Embracing superficial imperfections

July 1, 2011, RIKEN
Figure 1: Defects inside an ultrathin magnesium oxide film (red and blue spheres, bottom) accumulate electronic charges (red and blue contour map) and enhance the catalytic dissociation of water molecules (top). Credit: 2011 Yousoo Kim

Chemists normally work rigorously to exclude impurities from their reactions. This is especially true for scanning tunneling microscopy (STM) experiments that can produce atomic-scale images of surfaces. Using STM to investigate processes such as catalysis usually requires pristine substrates—any flaws or foreign particles in the surface can critically interfere with the test study. Preconceptions about interface defects and catalysis are about to change, however, thanks to recently published research led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako, Japan.

Through a series of high-level computer simulations, the researchers found that the catalytic splitting of water molecules occurs faster on an ultrathin insulating film containing misplaced atoms than on a non-defective . Because water splitting reactions are one of the easiest ways to generate hydrogen fuel, this finding could be a boon to future fleets of hybrid vehicles.

Recently, Kim, Kawai, and colleagues discovered that depositing insulating magnesium oxide (MgO) onto a silver (Ag) substrate enabled extraordinary control over water dissociation reactions. By injecting electrons into the MgO/Ag surface with an tip, they were able to excite absorbed water molecules and cause them to sever hydrogen and hydroxide ions. Optimizing the MgO film thickness was a key part of this approach; only ultrathin layers could direct water splitting owing to its enhanced electronic interaction strength. 

This relationship between insulator thickness and chemical reactivity suggested to the researchers that the oxide–metal interface plays a crucial role in directing catalytic reactions. Engineering specific flaws into the ultrathin interface could be one way to heighten the electronic control over the water-splitting process. However, since artificially manipulating oxide atoms is a difficult experimental procedure, they used density functional theory simulations, based on quantum mechanics, to analyze the role of structural imperfections in MgO.

Surprisingly, the researchers found that three different types of defects—oxygen and magnesium , as well as an oxygen vacancy—improved water adsorption and substantially lowered dissociation energy barriers compared to an ideal MgO film. Further analysis revealed that the oxide defects accumulate charges injected into the substrate (Fig. 1), creating an electronic environment that speeds up the catalytic splitting. “In the presence of these defects, the film’s chemical reactivity can be greatly enhanced,” says Kim.

The next goal for the researchers is to find systematic techniques to control interface imperfections on these novel catalytic films—an objective best achieved by the team’s unique combined experimental–theoretical approach, notes Kim.

Explore further: How to split a water molecule

More information:

1. Jung, J., et al. Activation of ultrathin oxide films for chemical reaction by interface defects. Journal of the American Chemical Society 133, 6142–6145 (2011). 

2. Shin, H.-J., et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010).

3. Jung, J., et al. Controlling water dissociation on an ultrathin MgO film by tuning film thickness. Physical Review B 82, 085413 (2010).

Related Stories

How to split a water molecule

April 18, 2010

(PhysOrg.com) -- A research team at RIKEN, Japan’s flagship research organization has succeeded for the first time in selectively controlling for reaction products in the dissociation of a single water molecule on an ultrathin ...

Solving single molecule mobility

October 18, 2010

Nanotechnologists assemble intricate nanodevices, such as computer chips, molecule by molecule using ‘bottom-up’ techniques that mirror nature. One approach shuttles molecules along surfaces into new and functional ...

Metal particle generates new hope for H2 energy

June 28, 2011

(PhysOrg.com) -- Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.