Rethinking reprogramming: A new way to make stem cells

April 7, 2011, Cell Press

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could lead to better strategies for developing stem cells for therapeutic use.

The ability to reprogram adult into cells that resemble has tremendous potential for both stem cell research and regenerative medicine. "Previous studies have demonstrated the usefulness of iPSCs not only in the study of basic stem biology, but also in the ability to generate patient-specific iPSC clones, which can then be further differentiated into the cell type of choice, such as blood, heart or liver cells," explains senior study author, Dr. Edward E. Morrisey, from the University of Pennsylvania. "However, at this point the low efficiency of iPSC reprogramming is a major impediment to adapting the process to large scale studies."

Scientists already knew that microRNAs (miRNAs), small non-coding pieces of that regulate , can enhance traditional cellular reprogramming methods. Dr. Morrisey and colleagues decided to look at whether miRNAs could directly reprogram mature mouse and human cells to a pluripotent stem cell state on their own, without adding any of the other reprogramming factors that are usually used to make iPSCs. Surprisingly, they found that a specific group of miRNAs can indeed reprogram mouse and human adult cells into an iPSC state by themselves, and can do so very rapidly and efficiently. The researchers went on to show that suppression of a chromatin remodeling enzyme called Hdac2 is a necessary part of this miRNA-mediated reprogramming process.

The findings suggest that it may be possible to produce iPSCs without forcing the expression of multiple stem cell-associated . "Taken together, our results show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency, without the need for pluripotent factors," concludes Dr Morrisey. "The current focus on developing miRNAs for therapeutic use could lead to a rapid miRNA/small molecule approach for iPSC reprogramming."

Explore further: New method for generating human stem cells is remarkably efficient

Related Stories

A new way to make reprogrammed stem cells

April 7, 2011

Researchers at the University of Pennsylvania School of Medicine have devised a totally new and far more efficient way of generating induced pluripotent stem cells (iPSCs), immature cells that are able to develop into several ...

Reprogrammed mouse fibroblasts can make a whole mouse

July 23, 2009

In a paper publishing online July 23 in Cell Stem Cell, a Cell Press journal, Dr. Shaorong Gao and colleagues from the National Institute of Biological Sciences in Beijing, China, report an important advance in the characterization ...

Recommended for you

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

Hot weather is bad news for bird sperm

January 19, 2018

A new study led by Macquarie University and spanning Sydney and Oslo has shown that exposure to extreme temperatures, such as those experienced during heatwave conditions, significantly reduces sperm quality in zebra finches, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.