The hidden danger of oxygen

February 21, 2011
Birch pollen with allergenic potential. The colouring of the fluorescence microscopic picture shows the difference in the chemical composition of the pollen which can contain allergy-triggering protein in the cell and on its surface. Credit: Manabu Shiraiwa/MPI for Chemistry

( -- New findings from German researchers at the Max Planck Institute for Chemistry and the Paul Scherrer Institute in Switzerland help to explain how toxic and allergy-causing substances in our air are formed. The scientists have for the first time detected long lived reactive oxygen intermediates on the surface of aerosol particles. These forms of oxygen survive here for more than 100 seconds and in that time react with other air pollutants such as nitrogen oxides. Chemically speaking, the dust particles are oxidized and nitrated. This is what makes soot particles more toxic and increases the potential of pollen to cause allergies.

Although scientists have suspected for years that these intermediate forms exist, it was believed that they disappeared within a fraction of a second, and therefore had little impact on chemical processes in the atmosphere. The intermediate forms of oxygen develop when reacts with particulate matter such as soot, polycyclic or pollen proteins.

"Not only does our research resolve earlier contradictions between theoretical calculations and measurements, it also shows that intermediates are also responsible for many atmospheric and physiological reactions," said Manabu Shiraiwa, lead author of the study.

Ulrich Pöschl, head of the aerosol research group at the Max Planck Institute in Mainz, goes one step further: "We suspect that the increase in allergies in industrialized countries is linked to these reactions. The more ozone and that are emitted by industry and traffic, the more frequently organic molecules such as birch pollen proteins are being nitrated and this is what irritates our immune system.” Pöschl and his colleagues have obtained evidence that these nitrated proteins can indeed cause more severe allergic reactions than the native form. If this hypothesis is confirmed, human health would be at even greater risk from combustion-related emissions than previously thought.

The reactive oxygen intermediates may also explain some of the direct adverse health effects of diesel soot and tobacco smoke particles. The polycyclic aromatic hydrocarbons found on the surface of these particles again readily react with ozone and form long-lived reactive oxygen intermediates. If the particles are inhaled, they interact directly with physiological processes in the human lung and other organs.

The scientists assume also that the oxygen intermediates may have an indirect effect on our climate. Presumably they are involved in the formation and growth of fine organic particles from volatile organic compounds emitted from both natural and manufactured sources such as vegetation and industrial activities. These particles scatter sunlight and influence the formation of clouds and precipitation, thus affecting the Earth’s energy balance and the hydrological cycle.

To quantify the atmospheric abundance and climatic effects of intermediates, the Mainz-based Max Planck researchers will perform further kinetic experiments and extensive, numerical simulations. In collaboration with biomedical partners, they are also investigating the physiological effects of nitrated proteins formed by the oxygen intermediates reacting with .

Explore further: Airborne Mites

More information: Manabu Shiraiwa, et al. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nature Chemistry, 20. Februar 2011; doi: 10.1038/NCHEM.988

Related Stories

Airborne Mites

November 24, 2005

Aerosol particles influence atmospheric chemistry, climate, and human health They are tiny and very finely dispersed and play important roles for our climate and health. We are talking about aerosol particles, airborne droplets ...

Invisible gases form most organic haze in urban, rural areas

July 9, 2007

A new study involving the University of Colorado at Boulder shows that invisible, reactive gases hovering over Earth's surface, not direct emissions of particulates, form the bulk of organic haze in both urban and rural areas ...

Scientists find chlorine may contribute to ozone formation

June 13, 2006

Standard methods of predicting air pollution don’t take atmospheric chlorine into account, but the chemical could be responsible for 10 percent or more of daily ozone production in local air, research at UC Irvine has found.

Recommended for you

New technique could make captured carbon more valuable

December 15, 2017

Carbon capture could help the nation's coal plants reduce greenhouse gas emissions, yet economic challenges are part of the reason the technology isn't widely used today. That could change if power plants could turn captured ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 21, 2011
Oh my God. Oxygen is Toxic!

We shall have to tax Oxygen emmissions $80 per ton.

We need scientist working on ways to capture and sequester toxic oxygen IMMEDIATELY.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.