Secrets of nanohair adhesion un-peeled by UA polymer scientists

November 19, 2010
Fine hairs on the soles of gecko feet allow the lizards to climb vertical surfaces with ease. UA polymer researchers have discovered a synthetic glue (carbon nanotubes) with nearly four times the adhesion power of gecko hairs. Now the scientists reveal why the mimic version offers its remarkable staying power.

Not long after Dr. Ali Dhinojwala, chairman of The University of Akron Department of Polymer Science, unpeeled the secret (fine, clingy hairs) behind the remarkable adhesion of gecko feet, he and fellow researchers came up with a synthetic replica: carbon nanotubes. Now, five years after that initial discovery, the basis of the success of these nanotubes is published in the Oct. 12, 2010, issue of the American Chemical Society’s Nano Letters.

While the story of nanotubes is one of success, not all carbon nanotubes are equal, nor is the individual adhesion performance of each strand, according to Dhinojwala. Although Dhinojwala and UA science graduate student Liehui Ge determined that these 8-nanometer-diameter carbon hairs — each 2,000 times smaller than the diameter of a human hair — adhere powerfully to glass and similar substrates, they furthered their research to learn why some strands have a firmer grip than others.

The video will load shortly

Getting a grip on adhesion

Findings by the UA scientists, in collaboration with Lijie Ci and Anubha Goyal, researchers with the Department of Mechanical Engineering and Materials Science at Rice University; Rachel Shi, UA Research Experience for Undergraduates (REU) intern; and L. Mahadevan, professor of applied mathematics and professor of organismic and evolutionary biology at Harvard University, reveal that the softer the nanotube, the greater its adhesion.

Using a combination of mechanics, electrical resistance and scanning electron microscopy (SEM) to study the contact between hairs of a large number of vertically aligned carbon nanotubes with glass or silicon substrates, the researchers found that soft nanotubes clasp and curve when pressure is applied, contributing to their adhesive strength.

“We found out that the diameter of the tubes is an important parameter for adhesion because we have to balance the adhesion and bending rigidity of the tubes,” Ge says. “Also, if you apply a high pressure, the tubes bend and buckle and make a larger contact area with the surface, which is the reason for higher .”

The dry adhesive, unlike liquid glue counterparts, promises successful use in extreme atmospheric and temperature conditions and in other applications that present challenges.

“The carbon nanotube-based gecko adhesives are going to open up opportunities to using these materials on robots, to climb vertical walls, and could actually be used in outer space (vacuum condition) because these materials stick without any liquid glue,” Dhinojwala says.

Explore further: Sticky gecko feet: The role of temperature and humidity

Related Stories

Sticky gecko feet: The role of temperature and humidity

May 14, 2008

A team of five University of Akron researchers has published the paper, “Sticky gecko feet: the role of temperature and humidity” in PLoS ONE, an open-access, online journal for peer-reviewed scientific and medical research.

Carbon nanotubes twice as strong as once thought

September 15, 2010

Carbon nanotubes -- those tiny particles poised to revolutionize electronics, medicine, and other areas — are much bigger in the strength department than anyone ever thought, scientists are reporting.

Nanotubes find niche in electric switches

March 10, 2009

New research from Rice University and the University of Oulu in Oulu, Finland, finds that carbon nanotubes could significantly improve the performance of electrical commutators that are common in electric motors and generators.

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

Sugar-coated nanomaterial excels at promoting bone growth

June 19, 2017

There hasn't been a gold standard for how orthopaedic spine surgeons promote new bone growth in patients, but now Northwestern University scientists have designed a bioactive nanomaterial that is so good at stimulating bone ...

3-in-1 device offers alternative to Moore's law

June 14, 2017

In the semiconductor industry, there is currently one main strategy for improving the speed and efficiency of devices: scale down the device dimensions in order to fit more transistors onto a computer chip, in accordance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.