Scientists develop environmentally friendly way to produce propylene oxide using silver nanoclusters

April 8, 2010
Argonne scientists (from left) Stefan Vajda, Larry Curtiss and Jeff Greeley have developed a new way of creating propylene that eliminates the many environmentally unfriendly by-products.

Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified a new class of silver-based catalysts for the production of the industrially useful chemical propylene oxide that is both environmentally friendly and less expensive.

"The production of oxide has a significant amount of by-products that are harmful to the environment, including chlorinated or peroxycarboxylic waste," said chemist Stefan Vajda of Argonne's Materials Science Division and Center for . "We have identified nanoclusters of silver as a catalyst that produce this chemical with few by-products at low temperatures."

Propylene oxide is commonly used in the creation of plastics and propylene glycols for paints, household detergents and automotive brake fluids.

The study is a result of a highly collaborative team that involved five Argonne Divisions and collaborators from the Fritz-Haber-Institut in Berlin and from the University of Illinois in Chicago, including a collaboration between the experimental effort led by Stefan Vajda and the theoretical analysis led by materials chemist Larry Curtiss and nanoscientist Jeff Greeley.

Large silver particles have been used to produce propylene oxide from propylene, but have suffered from a low selectivity or low conversion to propylene oxide, creating a large amount of carbon dioxide. Vajda discovered that nanoscale clusters of silver, consisting of both three atoms as well as larger clusters of 3.5 in size, are highly active and selective catalysts for the production of propylene oxide.

Curtiss and Greeley then modeled the underlying mechanism behind why these ultrasmall of silver were so effective in creating propylene oxide. They discovered that the open shell of the silver catalysts was the impetus behind the nanoclusters selectivity.

"Propylene oxide is a building block in the creation of several other industrially relevant chemicals, but the current methods of creating it are not efficient," Curtiss said.

"This is basically a holy grail reaction," remarked Greeley. "The work opens a new chapter in the field of silver as a for propene epoxidation," added Curtiss.

A paper on this work will be published in the April 9 issue of the journal Science.

Explore further: Scientists discover new platinum catalysts for the dehydrogenation of propane

Related Stories

Graphene-Based Nanomat Could Lead to Next-Generation Catalysts

January 19, 2010

(PhysOrg.com) -- Researchers have found a new use for graphene, the single-atom-thick sheet of carbon atoms that resembles chicken wire. Ever since graphene was first observed in 2004, its large surface area, excellent mechanical ...

Argonne to study fuel cell catalysts

May 26, 2005

Argonne National Laboratory will receive $3 million over three years for basic science studies that may lead to improved catalysts for hydrogen fuel cells.

Recommended for you

Research comes through with flying colors

April 25, 2017

Like a chameleon changing colors to blend into the environment, Lawrence Livermore researchers have created a technique to change the color of assembled nanoparticles with an electrical stimulant.

Nano-notch sends self-assembling polymers into a spiral

April 25, 2017

A simple circular or hexagonal pit written into silicon can be used to generate self-assembling polymer spirals thanks to the addition of a tiny notch in the template, report scientists in the launch issue of Nano Futures.

Graphene holds up under high pressure

April 24, 2017

A single sheet of graphene, comprising an atom-thin lattice of carbon, may seem rather fragile. But engineers at MIT have found that the ultrathin material is exceptionally sturdy, remaining intact under applied pressures ...

Freezing lithium batteries may make them safer and bendable

April 24, 2017

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.