Researchers observe metal to metal oxide progression

A catalyst's utility is influenced by its surface charge and how that charge is transferred. Until recently, studying charge transfer has relied on complex imaging techniques that are both expensive and time-consuming. Scientists ...

To build a better semiconductor, first identify its defects

Gallium oxide is a remarkable wide-bandgap semiconductor material. Put simply, that means it could potentially be used to create electronic devices that can operate under extreme conditions – such as when exposed to high ...

Physics vs. asthma

A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 ...

Significant progress made in inverse photoconductance

Valencia University (UV) researchers have modified the photoconductance of nanoparticles of tungsten oxide (WO3) in a controlled manner. This has potential applications in photonics and optomechanics. The results have been ...

Opening the hatch to heal the break

LMU researchers have determined the structure of a key enzyme complex that is involved in DNA repair, and traced the cycle of conformational changes that it undergoes while performing its biochemical function.

page 1 from 23

Electron configuration

In atomic physics and quantum chemistry, electron configuration is the arrangement of electrons of an atom, a molecule, or other physical structure. It concerns the way electrons can be distributed in the orbitals of the given system (atomic or molecular for instance).

Like other elementary particles, the electron is subject to the laws of quantum mechanics, and exhibits both particle-like and wave-like nature. Formally, the quantum state of a particular electron is defined by its wave function, a complex-valued function of space and time. According to the Copenhagen interpretation of quantum mechanics, the position of a particular electron is not well defined until an act of measurement causes it to be detected. The probability that the act of measurement will detect the electron at a particular point in space is proportional to the square of the absolute value of the wavefunction at that point.

An energy is associated to each electron configuration and, upon certain conditions, electrons are able to move from one orbital to another by emission or absorption of a quantum of energy, in the form of a photon.

Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements. The concept is also useful for describing the chemical bonds that hold atoms together. In bulk materials this same idea helps explain the peculiar properties of lasers and semiconductors.

This text uses material from Wikipedia, licensed under CC BY-SA