Lack of fuel may limit US nuclear power expansion

Mar 20, 2007

Limited supplies of fuel for nuclear power plants may thwart the renewed and growing interest in nuclear energy in the United States and other nations, says an MIT expert on the industry.

Over the past 20 years, safety concerns dampened all aspects of development of nuclear energy: No new reactors were ordered and there was investment neither in new uranium mines nor in building facilities to produce fuel for existing reactors. Instead, the industry lived off commercial and government inventories, which are now nearly gone. Worldwide, uranium production meets only about 65 percent of current reactor requirements.

That shortage of uranium and of processing facilities worldwide leaves a gap between the potential increase in demand for nuclear energy and the ability to supply fuel for it, said Dr. Thomas Neff, a research affiliate at MIT's Center for International Studies.

"Just as large numbers of new reactors are being planned, we are only starting to emerge from 20 years of underinvestment in the production capacity for the nuclear fuel to operate them. There has been a nuclear industry myopia; they didn't take a long-term view," Neff said. For example, only a few years ago uranium inventories were being sold at $10 per pound; the current price is $85 per pound.

Neff has been giving a series of talks at industry meetings and investment conferences around the world about the nature of the fuel supply problem and its implications for the so-called "nuclear renaissance," pointing out both the sharply rising cost of nuclear fuel and the lack of capacity to produce it.

Currently, much of the uranium used by the United States is coming from mines in such countries as Australia, Canada, Namibia, and, most recently, Kazakhstan. Small amounts are mined in the western United States, but the United States is largely reliant on overseas supplies. The United States also relies for half its fuel on Russia under a "swords to ploughshares" deal that Neff originated in 1991. This deal is converting about 20,000 Russian nuclear weapons to fuel for U.S. nuclear power plants, but it ends in 2013, leaving a substantial supply gap for the United States.

Further, China, India, and even Russia have plans for massive deployments of nuclear power and are trying to lock up supplies from countries on which the United States has traditionally relied. As a result, the United States could be the "last one to buy, and it could pay the highest prices, if it can get uranium at all," Neff said. "The take-home message is that if we're going to increase use of nuclear power, we need massive new investments in capacity to mine uranium and facilities to process it."

Mined uranium comes in several forms, or isotopes. For starting a nuclear chain reaction in a reactor, the only important isotope is uranium-235, which accounts for JUST 7 out of 1000 atoms in the mined product. To fuel a nuclear reactor, the concentration of uranium-235 has to be increased to 40 to 50 out of 1000 atoms. This is done by separating isotopes in an enrichment plant to achieve the higher concentration.

As Neff points out, reactor operators could increase the amount of fuel made from a given amount of natural uranium by buying more enrichment services to recover more uranium-235 atoms. Current enrichment capacity is enough to recover only about 4 out of 7 uranium-235 atoms. Limited uranium supplies could be stretched if industry could recover 5 or 6 of these atoms, but there is not enough processing capacity worldwide to do so.

Source: MIT

Explore further: Seattle building tops its green goals, makes energy to spare

Related Stories

Should Australia consider thorium nuclear power?

Mar 02, 2015

Australia has developed something of an allergic reaction to any mention of uranium or nuclear energy. Blessed as we are with abundant reserves of coal, oil and gas, we have never had to ask the hard questions ...

Caging nuclear waste

Mar 04, 2015

Metal-organic frameworks (MOFs) of metal ions and organic molecules have the potential to grant batteries a longer life and bring sustainable energy technologies to the developing world. Now in the highly ...

Study could change nuclear fuel

Mar 04, 2015

The adverse effects of radiation on nuclear fuel could soon be better controlled thanks to research involving UT's College of Engineering.

Recommended for you

Supermarkets welcome cold-comfort edge of F1 aerofoils

2 hours ago

UK-based Williams Advanced Engineering, the technology and engineering services business of the Williams Group, has collaborated with UK-based Aerofoil Energy to develop an aerodynamic device that can reduce ...

Japan has floating solar power plants in Hyogo Prefecture

Apr 24, 2015

Kyocera is in the news this month. Two floating solar power plants in two reservoirs in Kato City, Hyogo Prefecture, Japan, are complete. This is a joint venture. The two players are Kyocera and Century Tokyo ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.