Implantable electrode coating good as gold

Implantable electrode coating good as gold
The image depicts a neuronal network growing on a novel nanotextured gold electrode coating. The topographical cues presented by the coating preferentially favor spreading of neurons as opposed to scar tissue. This feature has the potential to enhance the performance of neural interfaces. Credit: Ryan Chen/LLNL

A team of researchers from Lawrence Livermore and UC Davis have found that covering an implantable neural electrode with nanoporous gold could eliminate the risk of scar tissue forming over the electrode's surface.

The team demonstrated that the of nanoporous achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Close physical coupling between neurons and the plays a crucial role in recording fidelity of neural electrical activity. The findings are featured on the cover of the journal Applied Materials & Interfaces.

Neural interfaces (e.g., implantable electrodes or multiple-electrode arrays) have emerged as transformative tools to monitor and modify neural electrophysiology, both for fundamental studies of the nervous system, and to diagnose and treat neurological disorders. These interfaces require low electrical impedance to reduce background noise and close electrode-neuron coupling for enhanced recording fidelity.

Designing neural interfaces that maintain close physical coupling of to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. An important obstacle in maintaining robust neuron-electrode coupling is the encapsulation of the electrode by scar tissue.

Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface, which is an obstacle to reliable neuron−electrode coupling.

However, the team found that nanoporous gold, produced by an alloy corrosion process, is a promising candidate to reduce formation on the electrode surface solely through topography by taking advantage of its tunable length scale.

"Our results show that nanoporous gold topography, not surface chemistry, reduces astrocyte surface coverage," said Monika Biener, one of the LLNL authors of the paper.

Nanoporous gold has attracted significant interest for its use in electrochemical sensors, catalytic platforms, fundamental structure−property studies at the nanoscale and tunable drug release. It also features high effective surface area, tunable pore size, well-defined conjugate chemistry, high electrical conductivity and compatibility with traditional fabrication techniques.

"We found that nanoporous gold reduces scar coverage but also maintains high neuronal coverage in an in vitro neuron-glia co-culture model," said Juergen Biener, the other LLNL author of the paper. "More broadly, the study demonstrates a novel for supporting neuronal cultures without the use of culture medium supplements to reduce scar overgrowth."

More information: "Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size." ACS Appl. Mater. Interfaces, 2015, 7 (13), pp 7093–7100 DOI: 10.1021/acsami.5b00410

Citation: Implantable electrode coating good as gold (2015, May 5) retrieved 14 November 2024 from https://phys.org/news/2015-05-implantable-electrode-coating-good-gold.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers develop efficient method to produce nanoporous metals

62 shares

Feedback to editors