Scientists make fundamental discovery about how gene expression functions in bacteria

Apr 22, 2010

Researchers from NYU Langone Medical Center have discovered and characterized a general mechanism that controls transcription elongation in bacteria. The mechanism, described in the April 23 issue of Science, relies on physical cooperation between a moving ribosome and RNA polymerase (RNAP) that allows for a precise adjustment of the transcriptional yield in response to translational needs. The study could lead to the development of new ways to interfere with bacterial gene expression and serve as a new target for antimicrobial therapy.

"The finding that the active controls the rate of transcription at every protein-coding gene and under various growth conditions was quite unexpected - and the results are far reaching," says Evgeny Nudler, PhD, the Julie Wilson Anderson Professor of Biochemistry at NYU Langone Medical Center and lead author of the study. "It appears that the ribosome not just moves behind RNAP while translating the nascent transcript, but it is actually able to 'push' the paused or arrested RNAP molecules forward, thereby accelerating RNAP speed and also helping RNAP to traverse road blocks imposed by DNA binding proteins."

In the study, Nudler and colleagues demonstrate that the rate of transcription elongation perfectly matches the rate of translation under various growth conditions. They also show that the transcription rate depends on codon usage, or the frequency of rare codons which modulates the speed of a ribosome. Finally, the authors illustrate that it is the speed of the ribosome that determines the speed of RNAP -- whereby the acceleration or deceleration of a ribosome by chemical or leads to corresponding changes in RNAP speed.

Transcription and translation are the two principle events in the pathway of converting the into proteins. The data shows that these two events are tightly coupled, and cannot proceed efficiently without each other. Thus, uncoupling these processes, by breaking the proposed physical linkage between RNA and polymerase and the ribosome, could be a new way to disrupt bacterial gene expression and serve as a new target for antimicrobial therapy.

The implications of the study are important because it could lead to the development of novel ways to disrupt and the creation of new antimicrobial therapies. Not only does this cooperation mechanism save energy by limiting any excessive transcripts that cannot be translated in a timely manner, but it also prevents premature transcription termination by Rho factor, ensuring continuous coupling between transcription and translation. Thus, bacteria rely on macromolecule trafficking and cooperation, a fundamentally novel mechanism, to finely control expression of each individual gene in response to nutrient availability and growth phase.

Explore further: Untangling DNA with a droplet of water, a pipet and a polymer

Related Stories

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Backtracking on DNA

Jun 23, 2009

(PhysOrg.com) -- Accuracy is essential for life, so in converting the information stored in DNA into a form in which it can be used, a high level of precision is required. Dr Tanniemola Liverpool from the ...

Recommended for you

Cultivation of microalgae via an innovative technology

23 hours ago

Preliminary laboratory scale studies have shown consistent biomass production and weekly a thick microalgal biofilm could be harvested. A new and innovative harvesting device has been developed for ALGADISK able to directly ...

Refined method to convert lignin to nylon precursor

Feb 27, 2015

A new study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates the conversion of lignin-derived compounds to adipic acid, an important industrial dicarboxylic acid produced for its use as ...

Living in the genetic comfort zone

Feb 26, 2015

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.