Membrane-coat proteins: Bacteria have them too

Jan 20, 2010
This electron microscopy image shows Gemmata obscuriglobus. This and other PVC bacteria, the EMBL scientists discovered, have membrane-coat proteins associated with the membranes of sub-cellular compartments like the one shown in green, in which vesicles can be seen as dark green regions. The bacterium's DNA is colored purple. Credit: Rachel Melwig & Christine Panagiotidis / EMBL

Although they are present almost everywhere, on land and sea, a group of related bacteria in the superphylum Planctomycetes-Verrucomicrobia-Chlamydiae, or PVC, have remained in relative obscurity ever since they were first described about a decade ago.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered that these poorly-studied possess proteins thought to exist only in eukaryotes - organisms whose cells have a nucleus. Their findings, featured on the cover of today's edition of PLoS Biology, could help to unravel part of the evolutionary history of eukaryotic cells such as our own.

In eukaryotes, the endomembrane system is a network of membrane-bound compartments which stores and transports material within the cell. These compartments, which include organelles such as the and the Golgi complex, also exchange portions of membrane with each other, by forming and absorbing vesicles. Scientists believed that membrane-bound compartments were unique to , and that membrane-coat proteins, which have a unique architecture and are associated with the endomembrane system, existed only in eukaryotes. Recently, however, membrane-bound compartments were observed in PVC bacteria.

In the new study, researchers in the group of Iain Mattaj, Director General of EMBL, are the first to provide molecular evidence that the coat proteins that shape the eukaryotic endomembrane system also exist in prokaryotes. Using a combination of bioinformatics, molecular biology and , the EMBL scientists found that proteins with the characteristic membrane-coat architecture also exist in members of the PVC group, but not in any other bacteria, in association with the membranes of subcellular compartments.

"Our findings provide unexpected clues as to how the endomembrane system of eukaryotes evolved," says Damien Devos, who led the study, "and since they are relatively simple cells, these bacteria could be used as model organisms for studying how this system works."

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Simplest bacteria unravelled at the cellular level

Dec 28, 2009

Even the simplest cell appears to be far more complex than researchers had imagined. In a series of three articles in the journal Science, researchers including Vera van Noort at the European Molecular Biology Laboratory (EMBL) ...

Study: How an internal organelle doubles

Nov 07, 2005

Yale University scientists have found a mechanism that regulates the way an internal organelle, the Golgi apparatus, duplicates as cells prepare to divide.

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0