Related topics: cells · cancer cells · protein

Going cold: The future of electron microscopy

Researchers use electron microscopy to produce high-resolution images at the atomic scale of everything from composite nanomaterials to single proteins. The technology provides invaluable information on the texture, chemistry, ...

Malaria pathogen under the X-ray microscope

Malaria is one of the most threatening infectious diseases in the world. An international team has now been able to investigate malaria pathogens in red blood cells in vivo using the BESSY II X-ray microscope and the ALBA ...

Bundlemers (new polymer units) could transform industries

From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together. Now, a team of researchers from the University of ...

Microscopic spines connect worm neurons

Dendritic "spines"—small protrusions on the receiving side of the connection (synapse) between two nerve cells—are recognized as key functional components of neuronal circuits in mammals. The shapes and numbers of spines ...

Researchers observe metal to metal oxide progression

A catalyst's utility is influenced by its surface charge and how that charge is transferred. Until recently, studying charge transfer has relied on complex imaging techniques that are both expensive and time-consuming. Scientists ...

page 1 from 23

Electron microscope

An electron microscope is a type of microscope that uses a particle beam of electrons to illuminate a specimen and create a highly-magnified image. Electron microscopes have much greater resolving power than light microscopes that use electromagnetic radiation and can obtain much higher magnifications of up to 2 million times, while the best light microscopes are limited to magnifications of 2000 times. Both electron and light microscopes have resolution limitations, imposed by the wavelength of the radiation they use. The greater resolution and magnification of the electron microscope is because the wavelength of an electron; its de Broglie wavelength is much smaller than that of a photon of visible light.

The electron microscope uses electrostatic and electromagnetic lenses in forming the image by controlling the electron beam to focus it at a specific plane relative to the specimen. This manner is similar to how a light microscope uses glass lenses to focus light on or through a specimen to form an image.

This text uses material from Wikipedia, licensed under CC BY-SA