Researcher devises new solar pond distillation system

Jan 05, 2010
Francisco Suarez is developing an artificial salt-gradient stratification process that traps solar heat at the bottom of the solar pond and uses the collected energy to power a membrane distillation system recently patented by the University of Nevada, Reno. The system desalinates water using the specialized low-cost solar pond powered by renewable energy. The system is designed to help sustain the ecosystems of closed-basin lakes regions where there is no outflow for water and a high evaporation rate, leaving a high concentration of minerals and salts in the lakes. The hot brine in the lower storage zone of the pond, which can reach temperatures greater than 195 degrees Fahrenheit, may then be used directly for heating, thermal desalination, or for other low-temperature thermal applications. Credit: Photo by Mike Wolterbeek

Ecosystems of terminus lakes around the world could benefit from a new system being developed at the University of Nevada, Reno to desalinate water using a specialized low-cost solar pond and patented membrane distillation system powered by renewable energy.

"These lakes - hundreds worldwide - such as the Great Salt Lake, the Salton Sea, the Aral Sea and Walker Lake here in Nevada, see a decline in water levels and an increase in salinity from both human and natural processes," Francisco Suarez, a doctoral student in hydrological sciences at the University, said. "The high levels of salinity are dangerous and unsustainable for aquatic life."

He presented a portion of his solar pond research last week at the annual Fall AGU (American Geophysical Union) Conference in San Francisco that was attended by 16,000 geophysicists from around the world. A paper on his project will be published in the International Journal of Heat and Mass Transfer in early 2010.

Suarez is developing an artificial salt-gradient stratification process that traps solar heat at the bottom of the solar pond and uses the collected energy to power the membrane distillation system recently patented by the University. The system is designed to help sustain the ecosystems of these closed-basin regions where there is no outflow for the water and a high evaporation rate, leaving a high concentration of minerals and salts.

The hot brine in the lower storage zone of the pond, which can reach temperatures greater than 195 degrees Fahrenheit, may then be used directly for heating, thermal desalination, or for other low-temperature thermal applications.

"Our model results show that in a two-week period, the temperature in the bottom of the solar pond increased from 68 to 126 degrees Fahrenheit and, even though the insulating layer is being eroded by double-diffusive convection, the solar pond remained stable," Suarez explained.

The process has been highly successful in the lab in a small-scale experiment using a 400-gallon tank, where dissolved solids and precise fiber-optic temperature sensing are being used to track the process as it desalinates the water. The next step for Suarez and the research group is to build a pilot-project, demonstration-scale, low-temperature desalination system in an open environment.

Suarez is working on this novel approach for sustainable production of freshwater with Civil and Environmental Engineering Department Professor and Chair Amy Childress and Professor Scott Tyler of the Department of Geological Sciences and Engineering. Childress and colleagues developed the patented membrane distillation system and Tyler developed the distributed temperature sensing system that uses a laser and fiber-optic cable to record temperatures in the solar pond.

"We're working on funding and permissions to build a system at Walker Lake where dissolved solids have increased by a factor of five to an unhealthy level for aquatic life, and water levels have dropped 140 feet in the past 100 years," Tyler said.

The cost to run the system is negligible because it uses the of the sun, trapped as heat in the bottom, to power most of the system.

"This can operate 24 hours a day using the stored energy. Very little electricity would be used," Suarez said. "For every surface acre of solar pond we can make three acre-feet of freshwater in about one year.

"The major advantages of this system are that renewable energy is used, the system is low maintenance and the stratification process that helps drive the process uses the salts from the lake itself."

Hydrologist Tyler said the process could serve as one component of a salinity management program and, coupled with other remediation efforts, could desalinate Walker Lake enough to make it a safe aquatic habitat. The new technology he and his colleagues have developed could be applied to declining water systems anywhere, with preference to areas with good solar capabilities and adequate freshwater flows.

Explore further: Ambitious EU targets for renewable energies make economic sense

Provided by University of Nevada, Reno

3.9 /5 (8 votes)

Related Stories

As Much Hot Water As Your Need Or The Sun In Trap

Feb 13, 2006

A unique solar collector was developed by specialists of the Moscow “ALTEN” company under the guidance of Boris Kazandzhan, Professor, Doctor of Science (Engineering), Moscow Power Engineering Institute. Originality of ...

Nuclear desalination

Nov 20, 2007

New solutions to the ancient problem of maintaining a fresh water supply is discussed in a special issue of the Inderscience publication International Journal of Nuclear Desalination. With predictions that more than 3.5 bi ...

Energy-efficient water purification

Jan 14, 2009

Water and energy are two resources on which modern society depends. As demands for these increase, researchers look to alternative technologies that promise both sustainability and reduced environmental impact. Engineered ...

Researchers study salt's potential to store energy

Jun 02, 2009

(PhysOrg.com) -- When the wind blows, it blows — sometimes to a fault. The same is true for the sun: It can beat down relentlessly, scorching everything — and everyone-beneath its intense rays.

Recommended for you

Should the Japanese give nuclear power another chance?

Oct 24, 2014

On September 9, 2014, the Japan Times reported an increasing number of suicides coming from the survivors of the March 2011 disaster. In Minami Soma Hospital, which is located 23 km away from the power plant, ...

UK wind power share shows record rise

Oct 24, 2014

The United Kingdom wind power production has been enjoying an upward trajectory, and on Tuesday wind power achieved a significant energy production milestone, reported Brooks Hays for UPI. High winds from Hurricane Gonzalo were the force behind wind turbines outproducing nuclear power ...

Global boom in hydropower expected this decade

Oct 24, 2014

An unprecedented boom in hydropower dam construction is underway, primarily in developing countries and emerging economies. While this is expected to double the global electricity production from hydropower, it could reduce ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Stiltpro
not rated yet Jan 06, 2010
Reverse the process to generate electricity? The pond is kind of storage battery . . . with clean water as a byproduct.
PPihkala
not rated yet Jan 06, 2010
Reverse the process to generate electricity? The pond is kind of storage battery . . . with clean water as a byproduct.

I think not so long ago here was an article about this 'blue energy' tested in Norway. There the river water mixes with ocean and one can draw electricity out of the process. Most they need to develop better membranes to get meaningful energies out.