Toshiba Develops High Performance CMOS Device Technology for 20nm Generation LSI

Dec 09, 2009

(PhysOrg.com) -- Toshiba Corporation today announced that it has developed a breakthrough technology for steep channel impurity distribution that delivers a solution to a key problem for 20nm generation CMOS technology. The technology opens the door to a future generation of LSI fabricated with bulk CMOS technology, the mainstream technology in today's LSI, by achieving the world's first practical fabrication process applicable to 20nm generation CMOS devices.

Toshiba unveiled the new technology at the 2009 International Electron Devices Meeting (IEDM) held in Baltimore, Maryland, U.S.A. from December 7 to December 9, one of the industry's leading international conferences.

The new technology forms three layers on the surface of the channel: epitaxial (Si), carbon-doped silicon (Si:C), and boron-doped Si:C. The top epitaxial Si layer functions as a low resistance path for the electrons and the holes; the intermediate Si:C acts as a defensive layer to prevent impurity diffusion; and the bottom boron-doped Si:C layer suppresses the fixed charge caused by the Si:C layer formation. Toshiba has confirmed that application of this novel structure achieves a boost in performance surpassing that of the conventional channel structure by 15 to 18%. This structure can be applied to both the nMOS and pMOS transistors to configure CMOS devices, with a simple process that adds a few layer-forming steps.

Previous R&D efforts have largely focused on nMOS transistors, in which channel impurities diffuse easily, or on examining the introduction of new solutions, such as SOI wafers and a 3D gate structure. Toshiba's new technology realizes a high-performance 20nm generation process without employing such new solutions, simply by optimizing impurity materials, device structures and processes.

Background and Targets

Today's bulk CMOS technology is seen as facing physical limits at around the 20nm generation. Problems such as degradation in electron mobility in the channel area and variation in threshold voltage will become obvious at that scale. These problems can be overcome by realizing a steep impurity distribution in the channel area, a structure that requires a low impurity density surface layer and a high impurity density substrate layer. This structure contributes better gate electrode control over the low-resistance area on the surface by obtaining fine switching of the current.

R&D in steep channel impurity profiles has largely been limited to the partial optimization of nMOS transistors, in which channel impurities easily diffuse, and effective technologies that can secure the overall CMOS performance in the 20nm generation has been a big challenge. As a result, the industry's attention has been directed to new materials or device structures, such as SOI wafers and a 3D gate structure. However, these solutions may result in new process steps that require extra facility investment or that lower productivity. Toshiba's newly developed technology , which is applicable to both the nMOS and pMOS transistors of CMOS devices, opens the way to taking bulk CMOS technology forward to the 20nm generation.

Brief overview

1. Conditions of development

The following technologies are necessary to create a steep channel profile:
(a) A silicon layer formed on the surface of the channel after introducing impurities into the channel area.
(b) A structure that prevents impurity diffusion to the surface due to thermal budget generated during the fabrication process.
(c) Optimization of materials and structures so that the channel functions effectively.

To develop a CMOS device, these technologies are necessary for both the nMOS and pMOS . Although optimization of nMOS has been already achieved, integration of CMOS devices with optimized pMOS has not followed.

2. New achievement

Toshiba has extended the nMOS results to develop both nMOS and pMOS devices as shown below. Performance has been confirmed to be 15 to 18% higher than that achieved with the conventional channel structure. Key points are in the followings;
(1) A boron-doped Si:C layer is formed in advance of the Si:C interlayer formation. For the pMOS device, arsenic is used to dope the channel.
(2) An Si:C interlayer is formed for both the nMOS and pMOS devices.
(3) Finally, a silicon layer is formed on the channel surface by epitaxial growth, for both the nMOS and pMOS devices.

Toshiba has optimized both the materials and the structures to realize an efficient fabrication process. Arsenic has been confirmed as a potential candidate for the pMOS channel impurity. In the pMOS device, unwanted fixed charge accumulation in the gate insulator, due to the carbon in the Si:C layer, is resolved by adding a boron-doped silicon layer under the Si:C layer. This result is achieved by making efficient use of the interaction between carbon and .

Source: Corporation

Explore further: A bump circuit with flexible tuning ability that uses 500 times less power

add to favorites email to friend print save as pdf

Related Stories

IMEC demonstrates viability of laser anneal for the 32nm node

Dec 11, 2006

At today’s IEEE International Electron Devices Meeting, IMEC reports that laser anneal is a promising option for further transistor scaling to the 32nm node. By device demonstration, IMEC shows that laser anneal allows ...

Recommended for you

Myo armband and smartglasses set for deskless workplace

44 minutes ago

Thalmic Labs, Canada-based makers of the Myo armband, has announced the integration of Myo with smartglasses, with the partnership help of a number of companies pairing the Myo with their products. The gesture-control ...

Indonesian capital threatens to ban Uber car app

1 hour ago

The Indonesian capital is threatening to shut down controversial smartphone car-hailing service Uber due to licensing issues a week after it officially launched in the city, an official said Wednesday.

Apple's stock bounces back to hit a new high (Update)

2 hours ago

Apple's stock touched a new high Wednesday, reflecting investors' renewed faith in CEO Tim Cook's ability to outwit the competition and expand the technological hit factory built by the late Steve Jobs.

User comments : 0