Small RNAs yield great amounts of data from ocean microbe samples

May 14, 2009

(PhysOrg.com) -- An ingenious new method of obtaining marine microbe samples while preserving the microbes' natural gene expression has yielded an unexpected boon: the presence of many varieties of small RNAs -- snippets of RNA that act as switches to regulate gene expression in these single-celled creatures. Before now, small RNA could only be studied in lab-cultured microorganisms; the discovery of its presence in a natural setting may make it possible finally to learn on a broad scale how microbial communities living at different ocean depths and regions respond to environmental stimuli.

" are exquisite ," said Edward Delong, a professor of civil and environmental engineering (CEE) and biological engineering. "We had developed this methodology to look at protein-encoding genes, because if we know which proteins the microbes are expressing under what conditions, we can learn about the environmental conditions and how these microbes influence those. The unexpected presence and abundance of these small RNAs, which can act as switches to regulate gene expression, will allow us to get an even deeper view of and microbial response to environmental changes.

DeLong and co-authors Yanmei Shi, a graduate student in CEE, and postdoctoral associate Gene Tyson describe this work in the May 14 issue of Nature. The team used a technique called metatranscriptomics, which allows them to analyze the of wild microbes, something that previously could be done only with lab-cultured microbes.

Microbes are ultra-sensitive environmental sensors that respond in the blink of an eye to minute changes in light, temperature, chemicals or pressure and modify their protein expression accordingly. But that sensitivity creates a quandary for the scientists who study them. Sort of like the observer effect in , by entering the environment or removing the microbes from it, the observer causes the microbes to change their protein expression. That same sensitivity makes some of these creatures exceedingly difficult to grow in lab cultures.

To overcome the hurdle of quickly collecting and filtering microbial samples in seawater before the microbes change their protein expression, the research team -- collaboratively with CEE Professor Sallie (Penny) Chisholm and her research team, which has successfully grown and studied the photosynthetic microbe, Prochlorococcus, in the lab -- created a method for amplifying the RNA extracted from small amounts of seawater by modifying a eukaryotic RNA amplification technique.

When Shi began lab studies of the RNA in their samples, she found that much of the novel RNA they expected to be protein-coding was actually small RNA (or sRNA), which can serve as a catalyst or regulator for metabolic pathways in microbes.

"What's surprising to me is the abundance of novel sRNA candidates in our data sets," said Shi. "When I looked into the sequences that cannot be confidently assigned as protein-coding, I found that a big percentage of those sequences are non-coding sequences derived from yet-to-be-cultivated microorganisms in the ocean. This was very exciting to us because this metatranscriptomic approach -- using a data set of sequences of transcripts from a natural microbial community as opposed to a single cultured microbial strain -- opens up a new window of discovering naturally occurring sRNAs, which may further provide ecologically relevant implications."

"We've found an incredibly diverse set of molecules and each one is potentially regulating a different protein encoding gene," said DeLong. "We will now be able to track the and the sRNA expression over time to learn the relevance of these little switches."

If we think of marine bacteria and their proteins as tiny factories performing essential biogeochemical activities -- such as harvesting sunlight to create oxygen and synthesize sugar from carbon dioxide -- then the sRNAs are the internal switches that turn on and off the factories' production line. Their discovery in the samples opens the way to learning even more detailed information in the lab: the researchers can now conduct lab experiments to look at the effects of environmental perturbation on . These new sRNAs also expand our general knowledge of the nature and diversity of these recently recognized regulatory switches.

"Being able to track the dynamics of small RNA expression in situ provides insight into how microbes respond to environmental changes such as nutrient concentration and physical properties like light and pressure," said Shi. "A very interesting question to follow up in the lab is how much fitness advantage a small RNA confers to microbes. Can the microbes with a specific small RNA perform better in competing for nutrients in a tough situation, for instance? The discovery of naturally occurring small RNAs is a first step towards addressing such questions."

This work was supported by the Gordon and Betty Moore Foundation, the National Science Foundation and the U.S. Department of Energy.

Provided by Massachusetts Institute of Technology (news : web)

Explore further: Scientists tap trees' evolutionary databanks to discover environment adaptation strategies

add to favorites email to friend print save as pdf

Related Stories

MIT reels in RNA surprise with microbial ocean catch

May 13, 2009

An ingenious new method of obtaining marine microbe samples while preserving the microbes' natural gene expression has yielded an unexpected boon: the presence of many varieties of small RNAs — snippets of RNA that act ...

Early-stage gene transcription creates access to DNA

Oct 06, 2008

A gene contained in laboratory yeast has helped an international team of researchers uncover new findings about the process by which protein molecules bind to control sequences in genes in order to initiate gene expression, ...

Scientists Explore Function of 'Junk DNA'

Nov 13, 2006

University of Iowa scientists have made a discovery that broadens understanding of a rapidly developing area of biology known as functional genomics and sheds more light on the mysterious, so-called "junk DNA" that makes ...

Tiny ecosystem may shed light on climate change

Dec 15, 2008

(PhysOrg.com) -- MIT researchers have created a microbial ecosystem smaller than a stick of gum that sheds new light on the plankton-eat-plankton world at the bottom of the aquatic food chain.

Recommended for you

How a white rot tackles freshly-cut food

Dec 23, 2014

Researchers sequenced and analyzed the white rot fungus Phlebiopsis gigantea, which can break down fresh-cut conifer sapwood. They also sequenced and analyzed the set of P. gigantea's secreted proteins (secretome) ...

Bacteria could be rich source for making terpenes

Dec 23, 2014

If you've ever enjoyed the scent of a pine forest or sniffed a freshly cut basil leaf, then you're familiar with terpenes. The compounds are responsible for the essential oils of plants and the resins of ...

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.