How sensitive can a quantum detector be?

Quantum physics is moving out of the laboratory and into everyday life. Despite headline results about quantum computers solving problems impossible for classical computers, technical challenges are standing in the way of ...

Precise measurements find a crack in universal physics

The concept of universal physics is intriguing, as it enables researchers to relate physical phenomena in a variety of systems, irrespective of their varying characteristics and complexities. Ultracold atomic systems are ...

Laser physics: At the pulse of a light wave

Physicists in the Laboratory for Attosecond Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich and at the Max Planck Institute for Quantum Optics (MPQ) have developed a novel type of detector that enables the oscillation ...

Unexpected twist in a quantum system

Physicists at ETH Zurich have observed a surprising twist in a quantum system caused by the interplay between energy dissipation and coherent quantum dynamics. To explain it, they found a concrete analogy to mechanics.

A neural network as an anchor point

Quantum mechanics is a well-established theory, but at a macroscopic level it leads to intractable contradictions. Now ETH physicists are proposing to resolve the problem with the aid of neural networks.

Indeterminist physics for an open world

Classical physics is characterized by the precision of its equations describing the evolution of the world as determined by the initial conditions of the Big Bang—meaning there is no room for chance. Yet our day-to-day ...

Device splits and recombines superconducting electron pairs

A device that can separate and recombine pairs of electrons may offer a way to study an unusual form of superconductivity, according to RIKEN physicists. This superconducting state would involve exotic particles called Majorana ...

Counting photons is now routine enough to need standards

Since the National Institute of Standards and Technology (NIST) built its first superconducting devices for counting photons (the smallest units of light) in the 1990s, these once-rare detectors have become popular research ...

Using light to encrypt communications

Researchers of the UT found a new way to protect data from attacks with quantum computers. As they published today in New Journal of Physics. With quantum computers on the rise, we can no longer exclude the possibility that ...

page 1 from 23

Quantum mechanics

Quantum mechanics is a set of principles underlying the most fundamental known description of all physical systems at the submicroscopic scale (at the atomic level). Notable among these principles are simultaneous wave-like and particle-like behavior of matter and radiation ("Wave–particle duality"), and the prediction of probabilities in situations where classical physics predicts certainties. Classical physics can be derived as a good approximation to quantum physics, typically in circumstances with large numbers of particles. Thus quantum phenomena are particularly relevant in systems whose dimensions are close to the atomic scale, such as molecules, atoms, electrons, protons and other subatomic particles. Exceptions exist for certain systems which exhibit quantum mechanical effects on macroscopic scale; superfluidity is one well-known example. Quantum theory provides accurate descriptions for many previously unexplained phenomena such as black body radiation and stable electron orbits. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.

This text uses material from Wikipedia, licensed under CC BY-SA