Low-cost process produces natural gas from algae

May 06, 2009

(PhysOrg.com) -- A new method for converting algae into renewable natural gas for use in pipelines and power generation has been transferred from the Department of Energy's Pacific Northwest National Laboratory to the marketplace under a license between Genifuel Corporation and Battelle.

The method, called catalytic hydrothermal gasification, creates out of - more quickly, more efficiently and at higher yields than other biofuel processes. Genifuel expects the process also requires less capital investment. The license agreement moves this technology for renewable energy production a step closer to commercial reality. Battelle operates PNNL for DOE.

"Algae and other aquatic hold significant promise for our country's ability to produce renewable energy domestically," said Genifuel President Jim Oyler. "At Genifuel we have developed efficient growth and harvesting techniques for the aquatic biomass. With this gasification process, we can convert the biomass to a clean fuel that is almost completely carbon-neutral."

He calls the PNNL process an "elegant system," noting that more than 99 percent of the biomass is gasified to produce renewable natural gas and byproducts such as carbon dioxide which can be recycled and reused in the algae growth ponds.

PNNL originally developed the catalytic gasification process to clean up industrial and food processing waste as an alternative to incineration. Over the past 10 years, PNNL scientists advanced the technology to include a more stable catalyst that enables it to also convert wet biomass, such as algae. PNNL has tested the gasifier with terrestrial plants, kelp and water hyacinths. It works especially well for aquatic biomass such as algae, because the feedstock doesn't require drying before fuel production.

Battelle granted Genifuel an exclusive license for the technology. As a national laboratory, one of PNNL's missions is to advance science and technology toward solutions that industry can take to the marketplace.

"Electricity produced from this natural gas can help electric utilities meet Renewable Portfolio Standards that require renewable energy sources," Oyler said. "Existing natural gas pipelines can deliver the fuel, or it can be used to produce electricity onsite in conventional natural-gas turbine generators."

The PNNL gasifier runs at relatively low temperatures - 350-degrees Celsius compared with 700-degrees or more for other systems - in a small stainless steel reactor.

According to Doug Elliott, the PNNL scientist who invented the gasification process, "It is simple - we put wet biomass like algae in the gasifier, where it is catalytically converted, and we collect fuel gas and byproducts.

"It's serendipity that our system creates carbon dioxide as a byproduct that Genifuel needs naturally to grow the algae," he said. "It's a completely green process."

Compared with other methods of gasifying biomass, such as anaerobic digestion, PNNL's process works 400 times faster and gives higher yields.

While simple in concept, the science behind the gasification process is actually quite complex. The technology has been under development for a number of years. PNNL scientists have achieved significant advances in the chemistry of catalysts and the selection of the optimum temperatures and pressures for the process, as well as improving the systems to protect the catalyst from impurities in the biomass.

PNNL scientists have extensive expertise in catalysis and reaction engineering, with particular focus on solutions for efficient use of bioproducts, converting biomass and renewable feedstocks to fuels and chemicals, and reducing environmental emissions.

Genifuel grows aquatic biomass, such as algae, in shallow ponds or troughs, then harvests and processes the biomass for conversion using the PNNL technology. Water used in the growth ponds doesn't have to be high-quality fresh water, and can be treated wastewater, brackish or alkaline water, or even salt water, Oyler said. Non-crop land can be used, so the process doesn't compete with food production.

Provided by Pacific Northwest National Laboratory (news : web)

Explore further: Green technology saves energy and boosts profits, productivity in factories

add to favorites email to friend print save as pdf

Related Stories

Coal gasification -- myths, challenges and opportunities

Feb 15, 2008

There is a growing consensus that increased demand for electricity will cement coal’s place in the energy portfolio for years to come. In fact, more than half of the electricity produced in the United States ...

H2CAR could fuel entire U.S. transportation sector

Apr 24, 2007

In a recent study, scientists have demonstrated that a hybrid system of hydrogen and carbon can produce a sufficient amount of liquid hydrocarbon fuels to power the entire U.S. transportation sector. Using ...

Recommended for you

Preparing for a zero-emission urban bus system

3 hours ago

In order to create a competitive and sustainable transport system, the EU must look to alternative fuels to replace or complement petrol and diesel. Not only will this reduce transport emissions but it will ...

Exploring the value of 'Energy Star' homes

3 hours ago

The numbers in neat columns tell—column by column, page by page—a story spread out across Carmen Carrión-Flores' desk at Binghamton University. It's a great story, she says; she just doesn't know how ...

Toward a networked energy future

Oct 29, 2014

February 1, 2050, is a good day for German electricity consumers. The breeze off the north coast is blowing so strongly that offshore wind farms and the wind turbines on land are running non-stop. Since it's ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (2) May 06, 2009
Burn algae! Hothouse Earth gives the details on seaweed farms where seawwed is grown and collected and made into natural gas.
jerryd
not rated yet Jun 06, 2009

If the goal is electricity why not just burn the algae? Or by heating it to 1500F you can gasify it into syn gas, H2/CO which burned just fine without losing energy to making CO2 before it's burned. And the heat can be recycled.
You'd be better off growing hemp on the same land and burning it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.