Stainless Steel Catalyst Lowers Cost of Microbial Fuel Cells

Feb 23, 2009 by Lisa Zyga weblog
Stainless Steel Cathode
Researchers at Pennsylvania State University have replaced expensive platinum with a stainless steel bristle brush as the catalyst in microbial fuel cells. Image credit: Bruce Logan.

(PhysOrg.com) -- Tiny bacteria munching on and metabolizing biodegradable materials can produce electrons that could be harnessed by microbial fuel cells for energy. By taking advantage of the catalytic reactions of these microorganisms to convert chemical energy to electric energy, microbial fuel cells could be a promising method for generating hydrogen fuel.

One way to improve microbial fuel cells' efficiency is by adding a small jolt of electricity at the cathode, while the bacteria feed at the anode. However, the best cathode material currently known is platinum, an expensive precious metal.

Recently, researchers at Pennsylvania State University led by Bruce Logan have discovered that a stainless steel brush works just as efficiently as platinum, cutting the cost of the cathode by more than 80 percent. As Logan explained, the requirement for platinum had been holding back development of microbial fuel cells, and the stainless steel alternative should enable scientists to push forward with their research.

One key to making stainless steel an effective catalyst was increasing the surface area of the cathode by arranging the stainless steel in the shape of a bristle brush, with densely packed bristles. The researchers predict that they can improve stainless steel's efficiency even further by making modifications such as minimizing the hydrogen bubbles that get trapped between the bristles.

Other challenges still remain in microbial fuel cell research before the technology becomes economical, such as the problem of scaling the device and maintaining its efficiency. Nevertheless, as Patrick Hallenbeck at the University of Montreal told Technology Review, researchers have made tremendous progress in microbial fuel cells in the past few years.

© 2009 PhysOrg.com

via: Technology Review

Explore further: Many tongues, one voice, one common ambition

add to favorites email to friend print save as pdf

Related Stories

Taking great ideas from the lab to the fab

32 minutes ago

A "valley of death" is well-known to entrepreneurs—the lull between government funding for research and industry support for prototypes and products. To confront this problem, in 2013 the National Science ...

SR Labs research to expose BadUSB next week in Vegas

1 hour ago

A Berlin-based security research and consulting company will reveal how USB devices can do damage that can conduct two-way malice, from computer to USB or from USB to computer, and can survive traditional ...

Recommended for you

Many tongues, one voice, one common ambition

22 hours ago

There is much need to develop energy efficient solutions for residential buildings in Europe. The EU-funded project, MeeFS, due to be completed by the end of 2015, is developing an innovative multifunctional and energy efficient ...

Panasonic, Tesla to build big US battery plant

23 hours ago

(AP)—American electric car maker Tesla Motors Inc. is teaming up with Japanese electronics company Panasonic Corp. to build a battery manufacturing plant in the U.S. expected to create 6,500 jobs.

Simulation models optimize water power

Jul 31, 2014

The Columbia River basin in the Pacific Northwest offers great potential for water power; hydroelectric power stations there generate over 20 000 megawatts already. Now a simulation model will help optimize the operation ...

Charging electric cars efficiently inductive

Jul 31, 2014

We already charge our toothbrushes and cellphones using contactless technology. Researchers have developed a particularly efficient and cost-effective method that means electric cars could soon follow suit.

User comments : 0