Researcher converts biodiesel-waste glycerol into omega-3 fatty acids

Aug 21, 2008

The typical American diet often lacks omega-3 fatty acids despite clinical research that shows their potential human health benefits. Zhiyou Wen, assistant professor of biological systems engineering in Virginia Tech's College of Agriculture and Life Sciences, found a way to grow these compounds using a byproduct of the emerging biodiesel industry.

"High energy prices have led to an increase in biodiesel production, which in turn has led to an increase in the amount of crude glycerol in the market," said Wen, who explained that biodiesel plants leave behind approximately 10 percent crude glycerol during the production process.

This has led the price of glycerol, a chemical compound widely used in the pharmaceutical and cosmetic industries, to drop in recent years. The rise in biodiesel production over the last decade means that the market can no longer absorb all the extra glycerol. Biodiesel producers must find alternative means for disposing of crude glycerol, which is prohibitively expensive to purify for industry use. Wen and his colleagues have developed a novel fermentation process using microalgae to produce omega-3 fatty acids from crude glycerol.

"We have shown that it is possible to use the crude glycerol byproduct from the biodiesel industry as a carbon source for microalgae that produce omega-3 fatty acids," said Wen, who added that the impurities in crude glycerol may actually be beneficial to algal growth. "After thorough chemical analysis, we have also shown that the algae biomass composition has the same quality as the commercial algae product."

After growing the algae in the crude glycerol, researchers can use it as an animal feed. This mimics a process in nature in which fish, the most common source of omega-3 fatty acid for humans, eat the algae and then retain the healthful compounds in their bodies. Humans who consume the fish in turn consume the omega 3s. Fish-derived products such as fish oil are an inexpensive alternative, but the taste has deterred widespread use.

Wen has partnered with Steven Craig, senior research scientist at Virginia Cobia Farms, to use crude glycerol-derived algae as a fish feed. "The results so far have been promising," Wen said. "The fish fed the algae had significant amounts of omega-3 fatty acids."

He and Audrey McElroy, associate professor of animal and poultry sciences, are now trying to determine whether the algae would work as a chicken feed. Kumar Mallikarjunan, associate professor of biological systems engineering, is also working with Wen to determine the fate of omega 3s after they enter the food supply. Researchers do not yet know whether oxidation would have a major impact on omega-3 fatty acids stored in cheese, for example.

Source: Virginia Tech

Explore further: After nuclear phase-out, Germany debates scrapping coal

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Computer to simulate harbor porpoises

6 hours ago

Researchers at Aarhus University, Denmark, use a computer model to predict the impact of new offshore wind farms on the population of harbour porpoises in the North Sea. A consortium of international energy ...

Inclusive approach to comprehensive retrofitting project

12 hours ago

Cuatro de Marzo is a district in the southern part of the Spanish city of Valladolid. It is a dense residential area with 190 privately-owned dwellings, developed in 1955. The area is populated by a series ...

New battery technology for electric vehicles

Nov 21, 2014

Scientists at the Canadian Light Source are on the forefront of battery technology using cheaper materials with higher energy and better recharging rates that make them ideal for electric vehicles (EVs).

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
not rated yet Aug 22, 2008
since mono and polyunsaturated fats and cholesterol in hard aged cheeses, e.g parmasan, are known to be oxidized, it's a no brainer to make an educated guess that MUCH more readily oxidized DHA and EPA will form toxic oxidized products in cheese...even if only aged for a short time.

More money could be made by extracting the DHA from the algae for the supplement market and still have the highly nutritious residue to feed to animals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.