Coal gasification -- myths, challenges and opportunities

Feb 15, 2008
Coal gasification -- myths, challenges and opportunities
PNNL research scale gasifier. Credit: Pacific Northwest National Laboratory

There is a growing consensus that increased demand for electricity will cement coal’s place in the energy portfolio for years to come. In fact, more than half of the electricity produced in the United States comes from coal. With demand for electricity expected to double by 2050 and renewable resources still years away from offsetting increased demand, it is clear -- coal is here to stay.

But can ‘dirty’ coal be used cleanly? The answer may be a resounding yes if gasification becomes common place, researchers said today at the 2008 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston.

“Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen and other valuable energy products,” said George Muntean, staff scientist at the Department of Energy’s Pacific Northwest National Laboratory, during his presentation at the AAAS symposium entitled “Coal Gasification, Myths, Challenges and Opportunities.”

PNNL scientists organized the symposium to provide an overview of how coal gasification can help meet the growing demand for clean energy.

“Gasification provides significant economic and environmental benefits to conventional coal power plants,” Muntean said. Rather than burning coal directly, gasification breaks down coal into its basic chemical constituents using high temperature and pressure. Because of this, carbon dioxide can be captured from a gas stream far more easily than from the smokestacks of a conventional coal plant.

“If we plan to use our domestic supply of coal to produce energy, and do so in a way that does not intensify atmospheric CO2 concentrations, gasification is critical," Muntean said. "It has the potential to enable carbon capture and sequestration technologies and play an important role in securing domestic sources of transportation fuels.”

Many experts predict that coal gasification will be at the heart of clean coal technology if current lifespan and economic challenges are addressed. One significant challenge is the historically short lifespan of refractories, which are used to line and protect the inside of a gasifier. Currently, refractories have a lifespan of 12 to 16 months. The relining of a gasifier costs approximately $1 million and requires three to six weeks of downtime.

“Gasification happens in an extreme environment so the lifespan of refractories is historically low,” said S.K. Sundaram, PNNL staff scientist. “Refractory lifespan must be increased before we can realize the promise of clean coal.”

During the symposium, S.K Sundaram highlighted two advanced gasifier models developed at PNNL that provide a scientific understanding on when and why refractories fail at such high rates. The data collected from these models could enable advanced or alternative gasification technologies to be produced. Use of these models could extend refractory lifespans by 3 years.

“Advances in modeling will help us better understand some of the key challenges associated with coal gasification – refractory durability and lifespan,” Sundaram said. “This will help reduce the capital costs of operating a coal gasifier.”

During the symposium, researchers at PNNL also highlighted advances in millimeter wave technology that could be used for real-time measurement of critical parameters (temperature, slag viscosity, refractory corrosion) inside a gasifier. The millimeter wave technology, developed at PNNL, has been used for a number of different applications, from airport security to custom fit clothing. Although in the early stages of development for this application, the technology shows promise to increase the efficiency and safety of coal gasifiers.

“Advances in gasification will help us meet demand for clean energy worldwide,” Sundaram said. “Science and technology are paving the way for cleaner coal for future generations.”

Source: Pacific Northwest National Laboratory

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Building gasifiers via simulation

Jan 13, 2011

A team of scientists from the National Energy Technology Laboratory (NETL) is using Oak Ridge National Laboratory's (ORNL's) Jaguar supercomputer, located at the Oak Ridge Leadership Computing Facility (OLCF), ...

A blue gem for greener fuel

Mar 19, 2010

(PhysOrg.com) -- Sapphire, a brilliant blue gemstone most familiar in jewelry, may soon play an important part in making coal a cleaner fuel source.

Oak Ridge 'Jaguar' supercomputer is World's fastest

Nov 16, 2009

An upgrade to a Cray XT5 high-performance computing system deployed by the Department of Energy has made the "Jaguar" supercomputer the world's fastest. Located at Oak Ridge National Laboratory, Jaguar is ...

Making coal cleaner

Sep 20, 2006

University of Queensland researchers are working on a process that could make the theory of clean coal a reality. Dr Joe da Costa's research group, from the Division of Chemical Engineering in the School of Engineering, has ...

Recommended for you

Environmentally compatible organic solar cells

8 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

9 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

9 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 0

More news stories

Freight train industry to miss safety deadline

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.