Screen-printed solar cells

Jan 29, 2008
Screen-printed solar cells
The solar module converts sunlight into electricity. © Fraunhofer ISE

Members of the Fraunhofer Institute for Solar Energy Systems ISE are traveling to Tokyo with bulky luggage these days. Their destination is Nanotech 2008, the world’s largest trade fair for nanotechnology. Their solar module, which they will be presenting in the BMBF marketing campaign ‘Nanotech Germany’, is the size and shape of a door: two meters high and sixty centimeters wide.

The key component of the new modules is an organic dye which in combination with nanoparticles converts sunlight into electricity. Due to the small size of the nanoparticles, the modules are semi-transparent. This aspect makes them well suited for façade integration. The solar module prototype manufactured by the researchers at Fraunhofer ISE is amber in color.

It is possible, however, to produce the modules in other colors, or even to print images or text on the module so that it serves as a decorative element. These design options open up an entirely new range of possible applications. Instead of mounting the solar module on the roof of a building, the electricity producer could be integrated in the glass façade. Used in this way, the new technology not only prohibits direct sunlight from entering the building interior but also generates electricity at the same time.

“We don’t see the dye solar cell as being a rival to the conventional silicon cell,” says Fraunhofer ISE physicist Andreas Hinsch. The module prototypes only achieve an efficiency of four percent, which is not sufficient for rooftop applications in comparison to the performance of crystalline silicon solar cells. On the other hand, dye solar cells have a clear advantage when it comes to façade integration.

The wafer-thin electricity-generating film, which lies between two glass panes, is produced from nanoparticles and applied using screen printing technique. This technique makes it possible to integrate any desired image on the module. A glass facade made of this material can be given a decorative and promotionally effective design, such as a colorful company logo, and delivers electricity into the bargain.

The dye solar module is still a prototype. The Fraunhofer researchers have developed it together with industry partners in the ColorSol project funded by the German Federal Ministry of Education and Research BMBF.

One particular challenge posed by the new technology is that the narrow gap between the two glass panes must be hermetically sealed so that no air can get in and destroy the reactive substances inside. The Fraunhofer experts have come up with a special solution to this problem. Instead of using polymeric glue like their competitors, they have decided to work with glass frit. To this end, glass powder is screen-printed onto the panes, and fuses with them at a temperature of around 600 degrees Celcius.

Fatigue tests under various weather conditions have shown that the solar cells still function properly even after several thousand hours. The long-term stability as such, however, has yet to be officially certified.

Source: Fraunhofer-Gesellschaft

Explore further: Electromobility, efficient and safe: Visio.M consortium presents new electric car

add to favorites email to friend print save as pdf

Related Stories

Solar modules embedded in glass

Jun 02, 2014

Organic solar modules have advantages over silicon solar cells. However, one critical problem is their shorter operating life. Researchers are working on a promising solution: they are using flexible glass ...

Circuits and sensors direct from the printer

Apr 30, 2014

Printers are becoming more and more versatile. Now they can even print sensors and electronic components on 2D and 3D substrates. A new, robot-assisted production line allows the process to be automated.

Recommended for you

First-of-a-kind supercritical CO2 turbine

17 hours ago

Toshiba Corporation today announced that it will supply a first-of-a-kind supercritical CO2 turbine to a demonstration plant being built in Texas, USA. The plant will be developed by NET Power, LLC, a U.S. venture, together w ...

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Turning humble seaweed into biofuel

Oct 16, 2014

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Ashibayai
4 / 5 (1) Jan 29, 2008
That's pretty cool I guess, but it's just a vain way of showing off solar power collection. It'd be awesome if they got the efficiency up to that of other solar cells.
NeilFarbstein
2 / 5 (1) Jan 29, 2008
The dyes are ruined by photochemical reactions.