Cutting greenhouse gases: wood chips in, alcohol out

Jun 12, 2007

California researchers plan to make biofuels in a novel way that doesn’t involve food crops or microbial fermentation.

A new research effort involving three University of California campuses and West Biofuels LLC, will develop a prototype research reactor that will use steam, sand and catalysts to efficiently convert forest, urban, and agricultural “cellulosic” wastes that would otherwise go to landfills into alcohol that can be used as a gasoline additive.

“We have a very feasible design to combine individual components of technology that have been proven separately into a successful biomass processing prototype,” said Robert Cattolica, leader of the research program and a professor of mechanical and aerospace engineering at UC San Diego’s Jacobs School of Engineering. Cattolica is the principal investigator of the project, which includes researchers at UC San Diego, Davis, and Berkeley.

Since carbon dioxide is naturally recycled from the atmosphere into cellulose in plants and back into the atmosphere as carbon dioxide when plants decompose, burning biomass-derived fuel such as alcohol in internal combustion engines has a zero net effect on the amount of carbon dioxide in the atmosphere. On the other hand, burning fossil fuels continually adds carbon dioxide, a greenhouse gas, to the atmosphere.

The new biofuels research project was inspired by California’s Global Warming Solutions Act, which was signed into law by Governor Arnold Schwarzenegger in September 2006. The act requires a 25 percent reduction in greenhouse gas emissions in California by 2025. Substituting biomass fuel for petroleum would help California achieve its goal. The two-year UC project is funded with a $1.85 million grant from West Biofuels LLC, a San Rafael, CA, company that is developing the biomass-to-alcohol technology, and a $1.15 million state-funded UC Discovery Grant.

“My company is excited about partnering with the University of California on a very promising technology that could eventually have a significant beneficial impact on our environment while also reducing California's reliance on oil imports,” said Peter Paul, chief executive officer of West Biofuels.

The alcohol currently added to gasoline sold in California is derived from corn, sugar cane, beets, or other farm crops. About 95 percent of the alcohol additive comes from outside of California and as far away as China. Rather than fermenting food crops into ethanol, Cattolica’s project will use a thermo chemical process to break down shredded cellulosic wastes into a mixed alcohol, predominately ethanol. “The technology we’re developing will tap a huge, energy-rich resource that now is literally going to waste,” said Cattolica.

The prototype reactor will mix the wastes with high temperature sand in a reaction chamber while the mixture is heated with steam. The gasification process generates an energy rich combination of hydrogen (H2), carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2). Those gases will be catalytically “reformed” into alcohols. About 30 percent of the energy content of the starting material will be burned to supply the energy needed to operate the plant.

This will actually include a three-step process. First, the biomass will be gasified thermochemically in a process that is widely used around the world to process wood, coal, and other carbon-containing materials into a “producer gas.” The methane in producer gas is typically burned to power electricity-generating power plants. However, the new reactor will catalytically “reform” the producer it into syngas, a mixture of hydrogen gas and carbon monoxide. In the final step, the syngas will be catalytically converted into mixed alcohols with a “synthesis” catalyst similar to one developed in the late 1980s by Dow Chemical Company.

In order for all the processes to run at maximum efficiently, the researchers will make use of highly sensitive laser sensors developed at UCSD to continuously monitor the entire operation. Process-control algorithms under development at UCSD’s Center for Control Systems and Dynamics (CCSD) will use the sensor data to continuously fine-tune steam temperatures and flows, gas mixtures, and catalyst regeneration to achieve the most efficient and reliable conversion of the biomass into fuel.

Cattolica’s team, which includes nine UC professors and seven post-doctoral fellows, will conduct research on a $1 million, 4-ton-per-day reactor. West Biofuels is building the reactor and will donate it to the University of California. Lessons learned will be incorporated into a 100-ton-per-day pilot plant, which could generate one 10,000-gallon tanker truck of mixed-alcohol fuel for every seven semi-tractor trailer trucks of biomass waste. California generates a huge volume of such wastes.

The Orange County basin alone produces about 30,000 tons of urban green wastes per day, which is simply dumped at landfills and used as compost. Cattolica said that waste supply could generate 3 million gallons per day of mixed-alcohol fuel, which is equivalent to all the ethanol currently added to California gasoline.

The biomass processing technology could also permit California to reduce its dependence on outside sources of ethanol. Motorists in California currently purchase more than 900 million gallons of ethanol a year, or 25 percent of the national total. However, the state produces only about 5 percent of the ethanol fuel it consumes. Schwarzengger issued an executive order in 2006 that requires the state to produce at least 20 percent of its biofuels by 2010, 40 percent by 2020, and 75 percent by 2050.

Cattolica said green wastes generated in San Diego and the Los Angeles and San Francisco Bay areas represent a huge untapped energy resource.

“The more paper and cardboard, agricultural and forest wastes, and sludge and municipal solid waste that we can process into biofuels the sooner the state can meet the state’s biofuels goals,” said Cattolica. “This is all attainable, and it will allow us to continue using internal combustion engines, reduce our dependence on fossil fuels, and reduce the production of greenhouse gases.”

Source: University of California - San Diego

Explore further: Many tongues, one voice, one common ambition

add to favorites email to friend print save as pdf

Related Stories

Chinese smartphone makers win as market swells

11 minutes ago

Chinese smartphone makers racked up big gains as the global market for Internet-linked handsets grew to record levels in the second quarter, International Data Corp said Tuesday.

Connected devices have huge security holes: study

31 minutes ago

The surge Web-connected devices—TVs, refrigerators, thermostats, door locks and more—has opened up huge opportunities for cyberattacks because of weak security, researchers said Thursday.

BlackBerry to buy Germany's Secusmart

41 minutes ago

(AP)—German voice and data encryption specialist Secusmart, which helps equip the German government with secure smartphones, says it's being acquired by BlackBerry for an undisclosed sum.

Full appeals court upholds labels on meat packages

11 minutes ago

(AP)—A federal appeals court has upheld new government rules that require labels on packaged steaks, ribs and other cuts of meat to say where the animals were born, raised and slaughtered.

Recommended for you

Many tongues, one voice, one common ambition

22 hours ago

There is much need to develop energy efficient solutions for residential buildings in Europe. The EU-funded project, MeeFS, due to be completed by the end of 2015, is developing an innovative multifunctional and energy efficient ...

Panasonic, Tesla to build big US battery plant

23 hours ago

(AP)—American electric car maker Tesla Motors Inc. is teaming up with Japanese electronics company Panasonic Corp. to build a battery manufacturing plant in the U.S. expected to create 6,500 jobs.

Simulation models optimize water power

Jul 31, 2014

The Columbia River basin in the Pacific Northwest offers great potential for water power; hydroelectric power stations there generate over 20 000 megawatts already. Now a simulation model will help optimize the operation ...

Charging electric cars efficiently inductive

Jul 31, 2014

We already charge our toothbrushes and cellphones using contactless technology. Researchers have developed a particularly efficient and cost-effective method that means electric cars could soon follow suit.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CWFlink
4 / 5 (1) Nov 28, 2007
If we can cost effectively turn trash into fuel, we turn all practices that produce trash into a step in a renewable fuel cycle. More than just eliminating the use of fossile fuels, we can eliminate much of what is considered "insanity" in environmentalism. Many of the ideas preached as environmentalism can drive people up the wall (e.g. anti-consumerism, denying use of plastic containers, etc.)

The problem is not with what we use in producing trash, but the LOW PRICE of trash! If trash could be recycled to produce something as valuable as fuel, people will automatically recycle... including the "bad" products such as plastic bags, etc.

When "doing the right thing" is also the cost effective thing to do, it no longer requires making a "religion" out of conservation.

In evaluating the "cost effectiveness" of this process, we must also give value to the freedom from misguided "rules" that make life more complex and stressful.