An innovative device studies gold nanoparticles in depth

March 23, 2016 by Nik Papageorgiou

Artists have used gold nanoparticles for centuries, because they produce vibrant colors when sunlight hits them. Their unique optical-electronics properties have put gold nanoparticles at the center of research, solar cells, sensors, chemotherapy, drug delivery, biological and medical applications, and electronic conductors. The properties of gold nanoparticles can be tuned by changing their size, shape, surface chemistry etc., but controlling these aspects is difficult.

Publishing in Nano Letters, researchers led by Fabrizio Carbone at EPFL have made an unprecedented study into the structure of gold nanoparticles. Working with Francesco Stellacci's lab (EPFL), the researchers achieved this using a device called "small-angle time-resolved electron diffractometer", which allowed them to study the structural arrangements of gold nanoparticles at ultrafast speeds – quadrillionths of a second.

The diffractometer itself is interesting because it uses a cheap alternative to a very expensive technique: the free electron laser (FEL). The FEL uses electrons to generate X-rays that can "study" molecules down to the atomic level – in billionths of a meter. Such a powerful tool normally comes at the cost of over a billion dollars. But in 2010, researchers from the Netherlands developed an alternative method jokingly called "poor-man's FEL", which looks at materials with an of ultrafast pulses, and achieve similar results.

In this study, the researchers developed a diffractometer device that uses the "poor-man's FEL" and exploits the high sensitivity that electrons have for interacting with matter. The device can study monolayers and very thin samples containing light elements, e.g. hydrogen and carbon. And when it comes to dense aggregates and small molecules, the small-angle time-resolved electron diffractometer can achieve the extreme sensitivity of a traditional FEL, but at a fraction of the cost: less than a million dollars.

The video will load shortly

Looking for gold

Using this approach, the EPFL researchers were able to obtain a movie in which the structural changes of gold nanoparticles triggered by light were captured with atomic resolution in both time and space.

These experiments show that ligand molecules attached to nanoparticles can self-assemble and order themselves into preferential orientations, which is central for creating ordered nanostructures. Even more striking was the discovery that that light itself can induce such ordering phenomena, providing a unique tool for controlling the physics of , with great potential for optoelectronic applications such as organic photovoltaic (OPV) etc.

The study provides proof-of-concept evidence that the small-angle time-resolved electron diffractometer enables the systematic investigation of structural properties of nano-assembled materials". The authors expect this to bear significantly onto multiple applications, including signal processing, biology and even future .

Explore further: Solving a nanotechnology riddle – what makes gold atoms stick together

More information: Giulia Fulvia Mancini et al. Order/Disorder Dynamics in a Dodecanethiol-Capped Gold Nanoparticles Supracrystal by Small-Angle Ultrafast Electron Diffraction, Nano Letters (2016). DOI: 10.1021/acs.nanolett.6b00355

Related Stories

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Nano-calligraphy on graphene

December 8, 2016

Scientists at The University of Manchester and Karlsruhe Institute of Technology have demonstrated a method to chemically modify small regions of graphene with high precision, leading to extreme miniaturisation of chemical ...

ANU invention to inspire new night-vision specs

December 7, 2016

Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create light-weight night-vision glasses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.