Crystal frameworks hold potential to deter pollution

January 29, 2016
Clockwise from top, a non-interpenetrated metal-organic framework, in blue, with partially interpenetrated frameworks and a doubly interpenetrated framework.

Chemists at Massey University have created a hybrid crystal framework, which has the potential for applications in vehicle fuel storage, carbon dioxide removal from smokestacks and drug delivery.

The material, known as a , was made by combining a metal salt with an (in this case a specially-designed organic acid) to create a framework called MUF-9, or Massey University Framework. The reaction creates a particular type of sponge-like crystal with microscopic holes that grab gas molecules just as regular sponges grab water.

The structure was made by connecting organic struts, and using metal ions as rivets. The scientists have also shown how to control the growth of a second lattice within the first.

The degree to which the crystal can store and separate gases depends on how much of the crystal is interpenetrated, or has a second lattice growing inside the first. Interpenetration in these frameworks is like threads of a cloth being interwoven with one another.

In a paper published today in the journal Nature Chemistry, a highly prestigious journal in the field of chemical sciences, scientists at Massey University, who led an international team involving researchers from the Institut de Recherche de Chimie, Paris, University of Leuven, Belgium and Delft University of Technology, The Netherlands, found a way to control interpenetration so that it only occurs in particular regions of the crystals.

This control over the interpenetration in MUF-9 can be exerted in several ways. The partially interpenetrated frameworks can be made directly, or by heating or grinding the original open material.

Professor Shane Telfer, from Massey's Institute of Fundamental Sciences, says by fine-tuning the crystals, the researchers have more control over their structural features, which is important for their applications.

"These new materials both have open regions that can act as a reservoir for incoming as well as tight spaces, which can discriminate and sort the guests bases on their size and chemical characteristics," he says.

"Although applications may be some way off, there is potential for these materials to be applied to carbon dioxide capture, as storage media in the fuel tanks of vehicles using non-petroleum fuels, and for the destruction of pollutants and other harmful materials."

Shorter-term, he says the work is expected to resonate with the large international research community in this area as it gives new and valuable insight into the phenomenon of interpenetration.

Explore further: Researchers developing sponge-like material to more efficiently store natural gas

More information: Alan Ferguson et al. Controlled partial interpenetration in metal–organic frameworks, Nature Chemistry (2016). DOI: 10.1038/nchem.2430

Related Stories

Entangled frameworks limber up

September 20, 2010

The degree of interconnectivity of molecular frameworks in microporous materials influences their structural flexibility and gas sorption

Swiss cheese crystal, or high-tech sponge?

January 27, 2014

The sponges of the future will do more than clean house. Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another to trap and ...

New crystal material captures carbon from humid gas

October 15, 2015

A new material with micropores might be a way to fight climate change. Scientists have created crystals that capture carbon dioxide much more efficiently than previously known materials, even in the presence of water. The ...

Recommended for you

Self-sealing syringe prevents blood loss in hemophilic mice

October 28, 2016

(—For people whose blood does not clot appropriately, such as those with hemophilia, diabetes, or cancer, getting an injection or blood draw with a hypodermic needle is not a trivial matter. Because the needle ...

A composite thread that varies in rigidity

October 27, 2016

EPFL scientists have developed a new type of composite thread that varies in stiffness depending on its temperature. Applications range from multifunctional robots to knitted casts, and even tunable medical devices.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.