Microrobots armed with new force-sensing system to probe cells

October 13, 2014 by Emil Venere
This image shows a "microforce-sensing mobile microrobot" juxtaposed against a U.S. penny. The device is being developed at Purdue University. Credit: Purdue University

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe.

Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots. Measuring these microforces is essential to precisely control the bots and to use them to study cells.

"What is needed is a useful tool biologists can use every day and at low cost," said David Cappelleri, an assistant professor of mechanical engineering at Purdue University.

Now researchers have designed and built a "vision-based micro force sensor end-effector," which is attached to the like a tiny proboscis. A camera is used to measure the probe's displacement while it pushes against cells, allowing a simple calculation that reveals the force applied.

The approach could make it possible to easily measure the "micronewtons" of force applied at the cellular level. Such a tool is needed to better study cells and to understand how they interact with microforces. The forces can be used to transform cells into specific cell lines, including for research and . The measurement of microforces also can be used to study how respond to certain medications and to diagnose disease.

This is a side view of the microrobot next to a U.S. penny. Credit: Purdue University

"You want a device that is low-cost, that can measure micronewton-level forces and that can be easily integrated into standard experimental test beds," Cappelleri said.

Microrobots used in research are controlled with magnetic fields to guide them into position.

"But this is the first one with a truly functional end effector to measure microforces," he said.

Current methods for measuring the forces applied by microrobots are impractical and expensive, requiring an or cumbersome sensors with complex designs that are difficult to manufacture. The new system records the probe's displacement with a camera as it pushes against a cell or tissue. Researchers already know the stiffness of the probe. When combined with displacement, a simple calculation reveals the force applied.

Findings were detailed in a research paper presented during the International Conference on Intelligent Robots and Systems in September. The paper was authored by postdoctoral research associate Wuming Jing and Cappelleri.

The new system combined with the microrobot is about 700 microns square, and the researchers are working to create versions about 500 microns square. To put this scale into perspective, the mini-machine is about one-half the size of the "E" in "One Cent" on a U.S. penny.

"We are currently working on scaling it down," he said.

Future research also may focus on automating the microrobots.

Explore further: MagnetoSperm: A tiny swimming robot inspired by human sperm

Related Stories

Chemists reveal the force within you

November 9, 2011

A new method for visualizing mechanical forces on the surface of a cell, reported in Nature Methods, provides the first detailed view of those forces, as they occur in real-time.

Hawaii lab turns laser-powered bubbles into microrobots

May 23, 2012

(Phys.org) -- A team of scientists from the University of Hawaii are working on microrobots created from bubbles of air in a saline solution. The bubbles take on their title of “robots” as a laser is deployed to ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Nano-calligraphy on graphene

December 8, 2016

Scientists at The University of Manchester and Karlsruhe Institute of Technology have demonstrated a method to chemically modify small regions of graphene with high precision, leading to extreme miniaturisation of chemical ...

ANU invention to inspire new night-vision specs

December 7, 2016

Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create light-weight night-vision glasses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.