New catalyst could improve biofuels production

October 16, 2014 by Tina Hilding
New catalyst could improve biofuels production
The October 2014 cover of ACS Catalysis shows a palladium-iron catalyst and its ability to remove oxygen from m-cresol, which is a model compound for lignin. Credit: Cortland Johnson, PNNL.

Washington State University researchers have developed a new catalyst that could lead to making biofuels cheaply and more efficiently.

Led by Voiland Distinguished Professor Yong Wang, the researchers mixed inexpensive iron with a tiny amount of rare palladium to make the catalyst. Their work was featured on the cover of the October issue of the journal ACS Catalysis.

Removing oxygen for better fuel

Researchers, government leaders and industry leaders are interested in as a way to reduce national dependence on fossil fuels and reduce emissions of harmful carbon dioxide to the atmosphere, where it contributes to global warming.

One of the biggest challenges in biofuels production is grabbing carbon for fuel while also removing . High oxygen content makes biofuel less stable, gooier and less efficient than and not suitable for airplane or diesel fuels. To improve production, researchers also want to use as little hydrogen as possible in the reaction.

The WSU researchers developed a mixture of two metals, iron along with a tiny amount of palladium, to serve as a catalyst to efficiently and cheaply remove oxygen.

"The synergy between the palladium and the iron is incredible," said Wang, who holds a joint appointment with Pacific Northwest National Laboratory and WSU. "When combined, the catalyst is far better than the metals alone in terms of activity, stability and selectivity."

Palladium makes iron work better

Iron catalysts have been an inexpensive way to remove oxygen from plant-based materials. But the catalyst can stop working when it interacts with water, which is a necessary part of biofuels production. The iron rusts.

Palladium can work in water, but it is not terrific at removing oxygen; and the metal is very expensive.

The researchers found that adding extremely small amounts of palladium to iron helped cover the iron surface of the catalyst with hydrogen, which caused the reaction to speed up and work better. It also prevented water from interrupting the reactions. And less hydrogen was needed to remove the oxygen.

"With biofuels, you need to remove as much oxygen as possible to gain energy density," said Wang. "Of course, in the process, you want to minimize the costs of oxygen removal. In this case, you minimize hydrogen consumption, increase the overall activity and gain high yields of the desired fuel products using much less expensive and more abundant catalyst materials."

WSU teams collaborate

The team used advanced techniques – including high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure spectroscopy – to understand how atoms on the 's surface interact with the plant material lignin. Corresponding theoretical calculations were done by a WSU team led by Jean-Sabin McEwen.

"By adding the palladium, we could potentially use metals such as iron, which are cheaper and abundant while functioning at better rates with higher yields than or alone," said Wang.

The researchers would like to extend their studies under more realistic conditions that more closely mimic real biofuels production.

Explore further: Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven

Related Stories

As fuel cells evolve, a role emerges for palladium

March 18, 2013

(Phys.org) —Researchers at Yale University have taken another step toward the development of low-temperature, lower-cost alkaline fuel cells, which are battery-like devices that convert oxygen and hydrogen into electricity ...

Researchers harness nature to produce the fuel of the future

January 30, 2013

Hydrogen has tremendous potential as an eco-friendly fuel, but it is expensive to produce. Now researchers at Princeton University and Rutgers University have moved a step closer to harnessing nature to produce hydrogen for ...

Cheap metals can be used to make products from petroleum

October 21, 2013

The ancient alchemists sought to transform base metals, like lead, into precious gold. Now a new process developed at the University of Illinois at Chicago suggests that base metals may be worth more than their weight in ...

Recommended for you

Fast, efficient sperm tails inspire nanobiotechnology

December 2, 2016

Just like workers in a factory, enzymes can create a final product more efficiently if they are stuck together in one place and pass the raw material from enzyme to enzyme, assembly line-style. That's according to scientists ...

Biodegradable polymers made by chemical vapor deposition

December 1, 2016

Polymerization by chemical vapor deposition (CVD) is a simple method for modifying surfaces by which topologically challenging substrates can be evenly coated with polymers. In the journal Angewandte Chemie, researchers have ...

Controlling chain conformations to enhance electronic devices

December 1, 2016

Controlling the way fluorinated polymer chains twist and turn may enable fast and flexible electrical circuits, according to collaborative research conducted at Penn State. The findings may offer substantial impact on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.