Scientists grow a new challenger to graphene

September 23, 2014
Credit: AlexanderAlUS/Wikipedia/CC BY-SA 3.0

A team of researchers from the University of Southampton's Optoelectronics Research Centre (ORC) has developed a new way to fabricate a potential challenger to graphene.

Graphene, a single layer of in a , is increasingly being used in new electronic and mechanical applications, such as transistors, switches and light sources, thanks to the unprecedented properties it offers: very low electrical resistance, high thermal conductivity and mechanically stretchable yet harder than diamond.

Now, ORC researchers have developed molybdenum di-sulphide (MoS2), a similar material to graphene that shares many of its properties, including extraordinary electronic conduction and mechanical strength, but made from a metal (in this case molybdenum combined with sulphur).

This new class of thin metal/sulphide materials, known as transition metal di-chalcogenides (TMDCs), has become an exciting complimentary material to graphene. However, unlike , TMDCs can also emit light allowing applications, such as photodetectors and light emitting devices, to be manufactured.

Until recently, fabrication of TMDCs, such as MoS2, has been difficult, as most techniques produce only flakes, typically just a few hundred square microns in area.

Dr Kevin Huang, from ORC who has led the research, explains: "We have been working on the synthesis of chalcogenide materials using a (CVD) process since 2001 and our technology has now achieved the fabrication of large area (>1000 mm2) ultra- thin films only a few atoms thick. Being able to manufacture sheets of MoS2 and related materials, rather than just microscopic flakes, as previously was the case, greatly expands their promise for nanoelectronic and optoelectronic applications."

Dr Huang and his team published their findings in the latest issue of the journal Nanoscale. They are currently working with several UK companies and universities, as well as leading international centres at MIT and Nanyang Technological University (Singapore).

Dr Huang adds: "Our ability to not only synthesise large uniform thin films but also to transfer these films to virtually any substrate has led to increased demand for our . We welcome enquiries from universities and industry who wish to collaborate with us."

Explore further: Scalable CVD process for making 2-D molybdenum diselenide

Related Stories

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014

( —Nanoengineering researchers at Rice University and Nanyang Technological University in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a highly ...

Scientists probe the next generation of 2-D materials

April 3, 2014

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that ...

Graphene paints a corrosion-free future

September 11, 2014

The surface of graphene, a one atom thick sheet of carbon, can be randomly decorated with oxygen to create graphene oxide; a form of graphene that could have a significant impact on the chemical, pharmaceutical and electronic ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Sep 23, 2014
This comment has been removed by a moderator.
not rated yet Sep 24, 2014
I don't trust any article/author that confuses the word "Complementary" with "Complimentary"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.