A glimpse at the rings that make cell division possible

Aug 22, 2014
A glimpse at the rings that make cell division possible

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process have proved difficult to pin down.

Researchers at Yale and Columbia universities recently shed light on this mystery by accumulating enough information to simulate the formation and constriction of contractile rings on a computer.

In the accompanying movie, a time series of micrographs show the formation and constriction of contractile rings in four rod-shaped yeast cells. One of the contractile ring proteins is shown in white. Clusters of the protein accumulate around the middle of each cell and then condense into a ring that constricts to pinch the cell in two.

Thomas Pollard, Sterling Professor of Molecular, Cellular, and Developmental Biology at Yale, and his colleagues discuss the process in recent studies published in Developmental Cell and Cell Reports.

Explore further: Building the ring to divide them all: Septin proteins bundle actin filaments into a ring

More information: Matthew R. Stachowiak, Caroline Laplante, Harvey F. Chin, Boris Guirao, Erdem Karatekin, Thomas D. Pollard, Ben O'Shaughnessy, "Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast" Developmental Cell, Volume 29, Issue 5, 9 June 2014, Pages 547-561, ISSN 1534-5807, dx.doi.org/10.1016/j.devcel.2014.04.021.

Rajesh Arasada, Thomas D. Pollard, "Contractile Ring Stability in S. pombe Depends on F-BAR Protein Cdc15p and Bgs1p Transport from the Golgi Complex," Cell Reports, Available online 21 August 2014, ISSN 2211-1247, dx.doi.org/10.1016/j.celrep.2014.07.048.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Researchers capture picture of microRNA in action

5 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

7 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

10 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

11 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.