A glimpse at the rings that make cell division possible

Aug 22, 2014
A glimpse at the rings that make cell division possible

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process have proved difficult to pin down.

Researchers at Yale and Columbia universities recently shed light on this mystery by accumulating enough information to simulate the formation and constriction of contractile rings on a computer.

In the accompanying movie, a time series of micrographs show the formation and constriction of contractile rings in four rod-shaped yeast cells. One of the contractile ring proteins is shown in white. Clusters of the protein accumulate around the middle of each cell and then condense into a ring that constricts to pinch the cell in two.

Thomas Pollard, Sterling Professor of Molecular, Cellular, and Developmental Biology at Yale, and his colleagues discuss the process in recent studies published in Developmental Cell and Cell Reports.

Explore further: Study provides new insights into the genetics of drug-resistant fungal infections

More information: Matthew R. Stachowiak, Caroline Laplante, Harvey F. Chin, Boris Guirao, Erdem Karatekin, Thomas D. Pollard, Ben O'Shaughnessy, "Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast" Developmental Cell, Volume 29, Issue 5, 9 June 2014, Pages 547-561, ISSN 1534-5807, dx.doi.org/10.1016/j.devcel.2014.04.021.

Rajesh Arasada, Thomas D. Pollard, "Contractile Ring Stability in S. pombe Depends on F-BAR Protein Cdc15p and Bgs1p Transport from the Golgi Complex," Cell Reports, Available online 21 August 2014, ISSN 2211-1247, dx.doi.org/10.1016/j.celrep.2014.07.048.

Related Stories

Recommended for you

Waiting to harvest after a rain enhances food safety

7 hours ago

To protect consumers from foodborne illness, produce farmers should wait 24 hours after a rain or irrigating their fields to harvest crops, according to new research published in the journal Applied and Environmental Microbiology.

A triangular protein pump

11 hours ago

Ludwig Maximilian University of Munich researchers have elucidated the structure of a molecular machine with an atypical triangular shape that is involved in peroxisome biogenesis, and characterized its conformation ...

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.