Nanoengineers develop basis for electronics that stretch at the molecular level

May 5, 2014
Nanoengineering professor Darren Lipomi is developing new "molecularly stretchable" electronic materials for applications in energy, biomedical devices, wearable sensors and consumer electronics. Credit: Darren Lipomi, UC San Diego Jacobs School of Engineering

Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Today's flexible electronics are already enabling a of wearable sensors and other mobile . But these flexible electronics, in which very thin are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity.

Writing in the journal Chemistry of Materials, UC San Diego Jacobs School of Engineering professor Darren Lipomi reports on several new discoveries by his team that could lead to electronics that are "molecularly stretchable."

Lipomi compared the difference between flexible and to what would happen if you tried to wrap a basketball with either a sheet of paper or a thin sheet of rubber. The paper would wrinkle, while the rubber would conform to the surface of the ball.

"We are developing the design rules for a new generation of plastic—or, better, rubber—electronics for applications in energy, biomedical devices, wearable and conformable devices for defense applications, and for consumer electronics," said Lipomi. "We are taking these design rules and doing wet chemistry in the lab to make new semiconducting rubber materials."

While based on thin-film semiconductors are nearing commercialization, stretchable electronic materials and devices are in their infancy. Stretchable electronic materials would be conformable to non-planar surfaces without wrinkling and could be integrated with the moving parts of machines and the body in a way that exhibiting only flexibility could not be. For example, one of the chief applications envisioned by Lipomi is a low cost "solar tarp" that can be folded up for packaging and stretched back out to supply low cost energy to rural villages, disaster relief operations and the military operating in remote locations. Another long-term goal of the Lipomi lab is to produce electronic polymers whose properties—extreme elasticity, biodegradability, and self-repair—are inspired by biological tissue for applications in implantable and prosthetics.

Lipomi has been studying why the molecular structures of these "rubber" semiconductors cause some to be more elastic than others. In one project published recently in the journal Macromolecules, the Lipomi lab discovered that polymers with strings of seven carbon atoms attached produce exactly the right balance of stretchability and functionality. That balance is key to producing devices that are "flexible, stretchable, collapsible and fracture proof."

Lipomi's team has also created a high-performance, "low-bandgap" elastic semiconducting polymer using a new synthetic strategy the team invented. Solid polymers are partially crystalline, which gives them good electrical properties, but also makes the polymer material stiff and brittle. By introducing randomness in the molecular structure of the polymer, Lipomi's lab increased its elasticity by a factor of two without decreasing the electronic performance of the material. Their discovery, published in RSC Advances, is also useful for applications in stretchable and ultra-flexible devices.

Explore further: Engineers create polymer light-emitting devices that can be stretched like rubber

Related Stories

Checkerboard surface put to flexible electronics test

December 13, 2012

(Phys.org)—Interest mounts in stretchable electronics, seen as the future direction in mobile electronics. How long before manufacturing giants load retail shelves with devices that have stretchable electronics is anyone's ...

Stretchable electronics: A gel that is clearly revolutionary

January 22, 2014

Researchers are determined to manufacture stretchable biomedical devices that interface directly with organs such as the skin, heart and brain. Electronic devices, however, are usually made from hard materials that are incompatible ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
not rated yet May 06, 2014
ALL matter stretches, but to different degrees. It is as if they are connected by very strong springs (the Coulomb force). Not exactly a new idea. See "The Secret of Gravity" (1997), "Secrets of the Atom" (1999), and "The Birth of an Atom" (2012), books on the electromagnetic model of the atom (Planck concept). We can also now analyze the features of atoms using a computer program: "Analyzing Atoms Using the SPICE Computer Program, Computer in Science and Engineering, Vol. 14, No. 3, May/June 2012.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.